
T-TESTS AND ANOVA
twelve

The purpose of this chapter is to extend the concept of statistical association learned 
in the two preceding chapters to the situation where the independent variable is quali-
tative, and the dependent variable is quantitative. As in the previous cases, two 
processes are involved: that of establishing that there is an association at the level of 
the sample, and that of establishing whether it is statistically significant, which means 
that there is an association at the level of the whole population. In the particular case 
of an independent qualitative variable and a dependent quantitative variable, the 
meaning of a statistical association is that the mean scores of the quantitative variable 
(the dependent variable) differ across the categories of the qualitative variable (the 
independent variable). If the independent variable has just two categories, the 
technique used is an extension of that of the t-test, seen briefly in Chapter 9. If it has 
more than two categories, a technique based on the analysis of the variance of the 
various groups, known as ANOVA, is used instead. ANOVA can also be used when 
there is more than one independent variable. The chapter will end with general 
remarks about statistical association and relationships between variables. 

After studying this chapter, you should know:

 • how to compare the means of various subgroups on a variable, and how to 
illustrate the comparison with charts and diagrams;

 • how to conduct a t-test, how to determine the conditions under which it can 
be used, and how to produce and interpret the relevant SPSS outputs;

 • how to conduct an ANOVA test (with either one or two factors), how to deter-
mine the conditions under which it can be used, and how to produce and 
interpret the relevant SPSS outputs;

 • how to measure statistical association when the variables are measured at 
the ordinal level;

 • and finally, how to distinguish between the notions of explanation, causal 
factor, and spurious relationship.  

Introduction
Suppose that we want to analyze the statistical relationship between sex (inde-
pendent variable, qualitative) and income (dependent variable, quantitative), and 
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Example 12.1
The average income for a sample of 1400 people, consisting of 800 men and 600 women, is 
$19,400 a year. The average income for women and for men separately is $23,400 for men 
and $17,300 for women. This would appear to mean that there is a large difference between 
the incomes of men and women. The average income of men is (23,400 – 17,300) / 17,300   
× 100 = 35.2% higher than that of women.  

This means that, for the sample under consideration, there is a statistical association 
between the variables sex and income; we are not yet generalizing to the whole population.  
However, the preceding statement does not mean that the variable sex is the cause of the dif-
ference in income. All we can say for the time being is that women make less money than men 
do. The interpretation of that difference is another matter. It could be due to discrimination 
(direct or systemic), it could be due to some other intervening variable (if, for instance, the 
women of this sample are generally younger than the men, and therefore have less working 
experience) or some other cause. 

to determine whether men tend to earn more, on the average, than women, or not. 
Several options are open to us. The simplest is to compute the average income 
separately for men and women. 

We will now illustrate the kind of analysis we want to do with a slightly more 
complex example. Consider Table 12.1, which comes from the GSS93 subset.sav 
data file. This shows the average age at marriage for a number of subgroups: for 
men, for women, for those who have a college degree and for those who do not, 
and for all combinations of these two variables. We can read from the table the 
following information: 

Report

Age When First Married

Respondent’s 
Sex College Degree Mean N

Std. 
Deviation

Male No College degree 23.56 356 4.718

College degree 25.75 136 4.909

Total 24.16 492 4.867

Female No College degree 21.20 580 4.539

College degree 24.74 129 5.574

Total 21.84 709 4.932

Total No College degree 22.10 936 4.745

College degree 25.26 265 5.258

Total 22.79 1201 5.034

Table 12.1  SPSS output for the Compare Means command
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 • Men in this sample tend to get married later than women. The difference is: 24.16 – 
21.84 = 2.32 years, or roughly 2 years and 4 months. 

 • Those who hold a college degree tend to get married later than those who do not. The 
difference is slightly more than 3 years. 

 • For men, getting a college degree seems to delay the average age of marriage by a 
little over 2 years; this is found by subtracting the average age of marriage of men 
without a degree from the corresponding statistic for men with a degree; for women, 
this delay is more than 3.5 years. 

The preceding statements are all formulated in the form of statistical associations 
based on the sample data. The first one says that, for this sample, the variable sex 
has an effect on the variable age at first marriage. The second one says that the 
variable college degree has an effect on age at first marriage. The third one is more 
complicated, as it involves the interaction between sex and college degree. Indeed, 
the statement highlights the fact that getting a college degree has a different effect 
on men and women. This is exactly the meaning of the interaction between two 
variables: the effect of one of the independent variables on the dependent variable 
differs according to the category of a second independent variable. 

To summarize, the notion of statistical association between a qualitative inde-
pendent variable and a quantitative dependent variable is simple: it is a matter of 
establishing whether the average of the dependent variable is different for the 
various categories of the independent variable. 

A more interesting question is whether this relationship is considered to be 
statistically significant. You should by now be used to this term: we discussed it at 
length in the two previous chapters. In plain language, it simply means that the 
difference in means observed on the sample is the reflection of a similar difference 
for the whole population. In a more technical language, it means that the observed 
difference would be quite unlikely (less than a 5% chance for it to occur) if it was 
not true for the whole population. In this case, it is safer to accept the claim (with 
a known risk of being wrong) that there is a difference in the average value of the 
dependent variable between the various groups of the population, corresponding 
to categories of the independent variable (men and women, graduates and non-
graduates, etc.). The risk of being wrong is known as the significance level, and it 
is given in the SPSS output.

The question now is: how do we assess such a claim? We have seen in Chapter 
9 how to do it: when only one independent variable is involved, we can perform a 
t-test to compare any two categories. This technique tests whether the observed 
difference between the means of two groups could be due to the randomness of 
the sample, or whether this difference is likely to be found in the population. 
When we studied it in Chapter 9, we did not formulate it in terms of statistical 
association: we were simply testing whether two means differ. Now, we interpret 
this difference as meaning that there is a statistical association between the inde-
pendent variable (which defines the various categories) and the dependent variable 
(which is what we measure). 
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The t-test as a test of statistical association
In Chapter 9, you have seen how to conduct a t-test to test the value of a mean or 
the difference between two means. You may want to review the tutorial of that 
chapter to recall how the commands are given. 

But in this chapter we want to interpret the t-test differently, as a measure of 
association between a qualitative and a quantitative variable. The very meaning of 
a statistically significant association between a qualitative independent variable 
and a quantitative dependent variable is precisely that the population mean scores 
on the dependent variable vary across the categories of the independent variable. 
The t-test is a test of hypothesis, which can be formulated as follows: 

H0:  There is no statistical association between the independent variable and the  
dependent variable.

H1:  There is a statistical association between the independent variable and the  
dependent variable.

A second formulation is:

H0:  The population mean scores on the dependent variable are identical across the 
categories of the independent variable.

H1:  The population mean scores on the dependent variable differ across the catego-
ries of the independent variable.

There is a third possible formulation. Let us denote by μ1 and μ2 the means of the 
dependent variable on the two groups defined by the independent variable. The 
formulation becomes:

 H0: μ1 = μ2, H1: μ1 ≠ μ2

SPSS will compute the means of the two groups on the sample, and will evaluate 
whether the observed difference is likely to be obtained under H0.  It will give you 
the probability p of obtaining a difference as big, or bigger, in the Sig. (2-tailed) 
column of the t-test output. But the computation is done in two different ways, 
depending on whether the variances between the two groups of the independent 
variable are considered to be equal for the population as a whole. Since we do not 
have that information, we must first conduct a hypothesis test on the equality of 
the two variances, called Levene’s test for equality of variance. 

In fact the t-test requires three conditions to be valid: 

1. that the dependent variable is normally distributed in the various groups defined by the 
independent variable;

2. that the population variances are equal across the groups;

3. that the samples are chosen randomly and that the scores are independent of each other. 
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This is why the Levene test is important. If the variances are not equal, the levels 
of significance are not as reliable. The same conditions are required for the ANOVA 
procedure, and again, the levels of significance are not reliable if these conditions 
are violated, but SPSS will give significance levels calculated more conservatively. 

To illustrate the method, let us work on the file GSS93 subset.sav, and analyze 
whether there is a statistically significant difference between men and women when 
it comes to age at first marriage. If there is, we will say that there is a statistical 
association between the variables Sex and Age when first married at the level of the 
population. SPSS will first give you a table titled Group statistics, which tells you 
that the average age at first marriage is 24.16 years for men and 21.84 years for 
women. So you can see that there is a relatively important difference. To determine 
whether it is statistically significant, you look at the table titled Independent 
Samples Tests (we will see in the tutorial how to produce these tables). This is 
reproduced as Table 12.2 (we have modified the column widths to fit the page). 

Independent Samples Test

Levene’s Test 
for Equality 
of Variances t-test for Equality of Means

F Sig. t df
Sig. 

(2-tailed)
Mean 

Difference
Std. Error 
Difference

95% 
Confidence 

Interval of the 
Difference

Lower Upper

Age 
When 
First 
Married

Equal 
variances 
assumed

.342 .559 8.066 1200 .000 2.320 .288 1.756 2.885

Equal 
variances 
not 
assumed

8.085 1064.662 .000 2.320 .287 1.757 2.883

Table 12.2  SPSS output for Independent-samples T-Test command

This table gives the result of three tests:

 • Levene’s test of equality of variances,

 • a t-test of equality of means if the equality of variances is assumed,

 • and a t-test of equality of means if the equality of variances is not assumed. 

As explained above, Levene’s test of equality of variances (two first numerical 
columns) tells you whether it is safe to assume that the variances of the variable 
Age when first married should be assumed to be equal for men and women. It tells 
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you, therefore, which of the two t-tests you should consider: the one with the 
equality of variances assumed (first row of Table 12.2) or the one with the equality 
of variances not assumed (second row of Table 12.2). We see here that the 
significance level of the Levene’s test is 0.559.  This means that if we assumed that 
the variances were different, we would run a 55.9% chance of being wrong. So it is 
safer to assume that the variances for men and women are equal, and consider, as a 
consequence, the first row of the table, not the second. Remember: the usual cut-off 
value for the significance test is 0.05. When the level of significance is less than that, 
we accept the alternative hypothesis to the effect that there is a difference in the 
statistics that are measured. When the level of significance is more than 0.05, we 
assume that there is no difference. In this particular case, the variances of the two 
groups can be considered to be equal. So, we look at the fist line, and we see that 
the Sig. (2-tailed) column gives a significance level of 0.000. This means that there 
is less than 1 chance in a 1000 that we will be mistaken if we assert that men and 
women in the population tend to get married for the first time at different ages. 
The difference is therefore statistically significant, and we can safely conclude that 
the association between Sex and Age when first married is statistically significant, 
that is, it is valid for the population as a whole, not just for the sample at hand. 

The conclusion of this discussion is that t-tests provide a way to decide whether 
the difference observed on a sample between the means of two different groups 
on a quantitative variable is statistically significant, that is, reflects a real difference 
at the level of the population, which is the very meaning of saying that the asso-
ciation is statistically significant. 

The independent variable need not be dichotomous in order to conduct an inde-
pendent samples t-test. It can contain more than two categories, provided you com-
pare two groups at a time. For instance, you want to see whether individuals in 
different religious groups tend to marry at different ages. You could do that with 
a t-test, but you can only compare two groups at a time. The tutorial tells you how 
to do that. 

This is a limitation, though. We may want to compare more than two groups at 
a time. We may also want to examine whether a combination of independent vari-
ables are statistically related to a dependent variable. The technique known as 
ANOVA permits such analyses, and it is to this that we now turn.

The analysis of variance
The aim of analysis of variance, commonly referred to as ANOVA, is to establish 
whether the observed differences between several means are statistically signifi-
cant. Typically, these means correspond to the categories of a qualitative variable. 
The very meaning of the existence of an association, at the level of the whole 
population, between a qualitative independent variable and a quantitative 
dependent variable is precisely that the differences in the means of the various 
groups are statistically significant. In that sense, the technique of ANOVA is a 
generalization of the t-test to the case where the independent variable has more 
than two categories. If the test is statistically significant, another question can be 
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asked: which categories differ? Could it be that two of the three categories are 
similar, and that they both differ from the other category? One-way ANOVA 
allows you to answer such questions. The term ‘one-way’ refers to the fact that 
there is only one independent variable, with several categories. 

But ANOVA also permits another generalization, to the situation where there is 
more than one independent variable. You may have two or more independent 
variables, and in this case you can determine whether each has an effect on the 
dependent variable, as well as determining whether there is an interaction between 
the independent variables. It is then called multi-way ANOVA. We will now illus-
trate both of these generalizations. Recall, however, the conditions under which 
ANOVA can be used, and which are roughly similar to the conditions of validity 
of t-tests explained in the previous section. 

One-way ANOVA

We will explain here the basic logic of ANOVA and the interpretation of the 
ANOVA outputs in SPSS, without going into the computational details, which can 
easily be found in the literature (suggestions are made in the bibliography). 

The technique of ANOVA is based on the comparison between the variances 
of the different groups to be compared and the total variance when the various 
groups are all lumped together. A statistic is computed on that basis, called the 
F-statistic. Its distribution is known, and it depends on the degrees of freedom of the 
statistic, which depends, in turn, on the number of groups and the number of 
cases in each group. A hypothesis testing procedure can be formulated as follows: 

H0:  There is no statistical association between the independent variable and the 
dependent variable.

H1:  There is a statistical association between the independent variable and the 
dependent variable.

Another formulation is:

H0:  The mean scores on the dependent variable are identical across all categories 
of the independent variable.

H1:  The mean scores on the dependent variable differ across the categories of the 
independent variable.

There is a third possible formulation. Let us denote by μ1, μ2, μ3, … the population 
means of the dependent variable on the various groups defined by the independent 
variable. The formulation becomes:

H0: μ1 = μ2 = μ3 = …  .

H1: At least two of the population means are different.
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We see here that, for our sample, there is a difference between Protestants, 
Catholics and Jews, the first group having the lowest average age at first marriage 
(22.3 years), and the latter having the highest average age (24.38 years). Two ques-
tions arise: are these differences statistically significant (i.e. true for the population 
at large)? If yes, could it be that two of the groups do not differ much, but differ 
significantly with the third? Both questions will be answered by the ANOVA pro-
cedure. The tutorial will explain how to give the ANOVA commands. Here, we 
will learn how to read the SPSS output (see Table 12.4). 

Basically, as in the t-test, the first four numerical columns provide the results of 
some of the calculations needed to compute the F-statistic. The probability of 
obtaining such an F-value under the assumption of equality of means is given in 
the last column, labelled Sig., which stands for the level of significance. We see here 

F will be the test statistic, and its distribution is known. The probability of getting 
a given value of F under H0 can be calculated from its distribution. We can therefore 
determine the cut-off value beyond which the values of F will not occur more than 
5% of the time. If a given value of F does fall beyond that cut-off value, we consider 
this so rare that we question the hypothesis H0 under which it is obtained, and 
instead retain H1, which states that there must be a difference between at least two 
of the group means. This logic results in a simple decision rule, for a non-
mathematically oriented user: look at the significance level in the ANOVA table 
produced by SPSS: if it is less than 0.05, you reject H0 and you consider that the 
observed differences between the group means are statistically significant. In this 
case, you will have to address another issue: which of the groups differ? 

To illustrate the procedure, we will look at the Age when first married in the GSS 
subset.sav file, and try to see whether individuals belonging to different religious 
groups tend to marry at different ages. In order to simplify the analysis, we will 
focus on the three main religious groups in the file, Protestants, Catholics and Jews, 
excluding others from the analysis. We have also chosen about 50% of the cases, 
because when the sample is large, associations, even if weak, tend to be significant 
as a result of the sheer size of the sample. If we just look at the means of the 
independent variable for these three groups, we get Table 12.3.

Table 12.3   Comparison of the mean Age at first marriage for a 
sample of 546 individuals belonging to three 
religious groups

Report

Age When First Married

Religious Preference Mean N Std. Deviation

Protestant 22.30 394 5.230

Catholic 23.67 139 4.513

Jewish 24.38 13 3.042

Total 22.70 546 5.051
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that the probability is well under the cut-off point of 0.05. It is less than one 
chance in 1000. This is so remote that we conclude that the null hypothesis can 
be safely rejected and we accept the alternative hypothesis of inequality of means 
between the three groups. ANOVA also gives you an effect size statistic, η (a 
Greek letter pronounced ‘eta’), which is a measure of the strength of the associa-
tion between the two variables. We get Table 12.5.

ANOVA Table

Sum of 
Squares df

Mean 
Square F Sig.

Age When 
First Married 
* Religious 
Preference

Between Groups (Combined) 587.718 2 293.859 11.778 .000

Within Groups 26745.393 1072 24.949

Total 27333.111 1074

Table 12.4  The ANOVA table in a one-way analysis of variance

Measures of Association

Eta Eta Squared

Age When First Married * Religious Preference .147 .022

Table 12.5   The eta and eta squared table in a one-way analysis of 
variance

Eta squared (written η2) measures the amount of variation in the dependent 
variable that can be attributed to the variation of the independent variable. It is 
commonly stated that an η2 of 0.01 is a weak association, a value of 0.06 denotes 
a medium association, and a value of 0.14 constitutes a strong association. 

Now the next question is: which of the groups really differ? Could it be that some 
are not significantly different? To answer this question, a series of post-hoc tests are 
available in SPSS, which are tests conducted after a significant ANOVA association 
has been found, in order to determine which groups differ, when considered two at 
a time. Several post-hoc tests are available, and they fall into two broad categories, 
depending on whether the variances of the different groups are equal or not. So, the 
first thing to do is to conduct a homogeneity-of-variance test. If the variances are 
considered equal, a set of post-hoc significance tests are available. If the variances 
are not equal, another set of tests are available (details are given in the tutorial). Let 
us consider the output of one of these tests, the Tukey HSD test, which is run if the 
variances are considered equal. Table 12.6 shows the output. 

The table indicates the difference between the sample means of any two groups 
and the statistical significance of that difference, that is, the risk that one takes in 
asserting that the groups do differ at the level of the whole population. The differ-
ences that are statistically significant are flagged. We see here that the difference 
between Protestants and Catholics, and between Protestants and Jews are indeed 
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significant, but that the difference between Catholics and Jews is not statistically 
significant. The observed difference between the sample means of these latter 
groups could well be due to chance. The table also indicates the confidence inter-
vals in which these differences are likely to vary at the level of the whole popula-
tion. You may have noticed that when the confidence interval includes zero, the 
difference is not statistically significant. Therefore we can formulate our general 
conclusion in the following way. 

We conducted an ANOVA analysis on a sample of 546 individuals and found that the 
relationship between religious preference and age when first married is statistically 
significant (F = 11.778; p < 0.001). Post-hoc tests indicated that the differences 
between Protestants and Catholics, and between Protestants and Jews, are signif-
icant (p < 0.001 and p = 0.004, respectively), but that the difference between 
Catholics and Jews is not statistically significant (p = 0.151).

In conclusion, the ANOVA technique allows you to determine whether observed 
differences between several groups are significant or not, and if they are, it allows 
you to dig further to determine which differences are significant when the groups 
are taken two at a time. 

Two-way and multi-way ANOVA

The ANOVA procedure allows you to analyze the effect of two or more independ-
ent variables on a dependent variable. The procedure is sometimes called two-
factor or multi-factor ANOVA. In such a situation, the effects of the independent 
variables on the dependent variable are complex: each independent variable could 
have an independent effect on the dependent variable. These are called main 
effects. But the various independent variables could also have a combined effect, 

Multiple Comparisons

Dependent Variable Age When First Married Tukey HSD

(I) Religious 
Preference

(J) Religious 
Preference

Mean 
Difference 

(I-J) Std. Error Sig.

95% Confidence Interval

Lower 
Bound

Upper 
Bound

Protestant Catholic –1.381* .355 .000 –2.21 –.55

Jewish –3.399* 1.057 .004 –5.88 –.92

Catholic Protestant 1.381* .355 .000 .55 2.21

Jewish –2.018 1.086 .151 –4.57 .53

Jewish Protestant 3.399* 1.057 .004 .92 5.88

Catholic 2.018 1.086 .151 –.53 4.57

*The mean difference is significant at the 0.05 level.

Table 12.6   Outputs of the post-hoc tests (in this case, only the Tukey HSD  
test was conducted)

12_Antonius_CH-12.indd   261 10/10/2012   5:51:03 PM



INTERPRETING QUANTITATIVE DATA WITH SPSS262

which cannot be reduced to the effect of each factor separately. Such effects are 
called interactions. For instance, if you develop a new teaching method, it could 
have an effect by itself on the learning process, in comparison with the old method, 
but it could also have a distinct effect on men and women. In this case, there is an 
interaction between the sex and teaching method variables. This is what is meant 
by interaction. Finally, if you had two new teaching methods that you want to 
compare to an old method, you may want to study how men and women sepa-
rately react to each of these methods. These are called simple main effects: these 
are the effects of one of the independent variables on the dependent variable, 
studied separately for the various levels of some other independent variable.

In this section, we will not give a full treatment of the procedure and its com-
plexities. Indeed, the multi-way ANOVA requires many conditions in order to 
be used.

Multi-way ANOVA is based on the same mathematical approach as the one-way 
ANOVA. An F-statistic is computed by comparing the variances between the 
various groups with the total variance. Its distribution depends on the degrees of 
freedom of the statistics, as explained above. On this basis, several hypotheses are 
tested: one for the overall effect of the model, one for each main effect, one for 
each interaction, etc. In each case, if the level of significance of the F-statistic is less 
than 0.05, the observed differences between the groups are considered statistically 
significant. 

Here is an illustration. Looking at our example of Age when first married, we see 
in Table 12.7 the mean age of various subgroups defined by a combination of the 
variables Sex and Religious preference. Take a minute to examine the various means 
that appear in this table. 

Descriptive Statistics

Dependent Variable Age When First Married

Respondent’s Sex Religious Preference Mean Std. Deviation N

Male Protestant 23.69 4.869 309

Catholic 24.85 4.833 95

Jewish 27.07 4.305 14

Total 24.06 4.889 418

Female Protestant 21.33 4.892 478

Catholic 22.95 4.981 170

Jewish 23.44 2.833 9

Total 21.78 4.943 657

Total Protestant 22.25 5.014 787

Catholic 23.63 5.004 265

Jewish 25.65 4.141 23

Total 22.67 5.045 1075

Table 12.7  Age at first marriage broken down by sex and by religious preference
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We are dealing here with a model that states that the Age when first married is 
affected by the variables Sex, Religious preference, and their interaction, and the 
table gives us five F-values, together with their significance levels. The first is for 
the model as a whole, and we see that the model is statistically significant, but we 
do not know which components are also statistically significant. The intercept 
refers to a constant that should appear in an equation that links the independent 
variables and the dependent variable, but we will not deal with this equation here. 
The effect of each individual independent variable is statistically significant, but 
we see that the Sig. value for the interaction is 0.657, which is not statistically 
significant. The conclusion can be formulated as follows: 

Each of the variables sex and religious preference has a statistically significant 
effect on age when first married (p < 0.001 in each case). But the effect of their 
interaction is not statistically significant (p = 0.657). This means that the differences 
between men and women, across the various religious groups, are not large enough 
to allow us to conclude that gender differences are linked to religious preference for 
the population at large. 

There are evidently differences between the various religious groups, but we 
cannot tell, at first sight, whether they are significant. Table 12.4 told us that the 
effect of the variable Religious preference was significant overall, and Table 12.6 told 
us which of the religious groups displayed a statistically significant difference in 
the average age at first marriage. A t-test also indicated that gender differences are 
statistically significant. But we do not know whether the interaction between reli-
gious preference and sex is statistically significant, which means that the religious 
preference affects differently men and women, when Age when first married is 
considered. Table 12.8 will help us settle the issue.

Tests of Between-Subjects Effects

Dependent Variable Age When First Married

Source
Type III Sum of 

Squares df Mean Square F Sig.

Corrected Model 1924.762a 5 384.952 16.196 .000

Intercept 100572.455 1 100572.455 4231.363 .000

sex 304.466 1 304.466 12.810 .000

relig 483.373 2 241.687 10.168 .000

sex * relig 19.944 2 9.972 .420 .657

Error 25408.349 1069 23.768

Total 579614.000 1075

Corrected Total 27333.111 1074

a. R Squared = .070 (Adjusted R Squared = .066)

Table 12.8  Detailed analysis of main effects and interaction effects
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We see, therefore, that the SPSS output represented in Table 12.8 allows us to 
establish whether the model as a whole is valid, and whether the main and 
interaction effects are significant. It is possible to go further, and engage in the 
analysis of simple main effects, and to contrast the various groups within each sex 
category. We will leave these issues for a more advanced course on ANOVA. 

One last remark is in order. We have purposely used sometimes Sig. and 
sometimes p to denote the significance level. This is so because the significance 
level is equal to the probability of obtaining such an F-value under the null 
hypothesis.

Graphical representations of the various kinds of effects  
Figure 12.1 illustrates the various kinds of effects, showing the box plots of a quan-
titative dependent variable with two qualitative independent variables, IV1 (three 
categories represented on the X-axis) and IV2 (two categories that define the clus-
ters). Thus, there are three groups which may differ on IV1 alone, or on IV2 alone, 
or on both without interaction, or on both with interaction. Let us examine them 
one at a time. 

In Figure 12.1(a) there is a noticeable difference between the three categories 
of IV1, but there seems to be very little difference within each of the three clusters. 
The two groups defined by IV2 within each of the clusters are very much alike. 
This is an illustration of a situation where the effect of IV1 would be statistically 
significant, but neither IV2 nor their interactions would have a statistically signifi-
cant effect.

In Figure 12.1(b) we do not see a noticeable difference between the three 
categories of IV1, but there is a comparable difference between the two groups 
within each of the three clusters. The two groups defined by IV2 within each of 
the clusters differ noticeably in very comparable ways: the second group within 
each cluster scores higher than the first group, and the difference between them 
seems comparable across the three clusters of IV1. This is an illustration of a 
situation where the effect of IV1 is not statistically significant, but the effect of 
IV2 is. The interaction between them does not seem to have a statistically sig-
nificant effect.

In Figure 12.1(c) there is a noticeable difference between the three categories 
of IV1, and there seems to be a big difference within each of the three clusters as 
well. The two groups defined by IV2 within each of the clusters differ from each 
other in very comparable ways. This is an illustration of a situation where both the 
effects of IV1 and of IV2 are significant, but their interactions are not. 

In Figure 12.1(d) we see a noticeable difference between the three categories of 
IV1, and also a difference within each of the three clusters defined by IV2. 
Therefore, the effects of both variables are statistically significant. Look carefully: 
in the first two clusters, the second group scores lower than the first group. In the 
third cluster, the second group scores higher. This means that the effect of IV2 var-
ies across the categories of IV1, sometimes being associated with a lower score for 
the second group, and at other times being associated with a higher score for the 
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second group. This is an illustration of a situation where both variables and their 
interaction have a statistically significant effect. 

The exercises and the SPSS tutorial will allow you to master these concepts. 

Figure 12.1 Graphical representations of the different types of effects

(a)

(b)

(c)

(d)
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Ordinal variables
There are specific methods for establishing whether or not there is a statistical 
association between ordinal variables, and whether it is significant. Such methods 
take into account the ranking of each individual on one of the variables in com-
parison to his ranking on the other variable. They will not be treated here. Ordinal 
variables are often treated as quantitative variables and correlations are computed. 
The results of such computations are sometimes difficult to interpret. A classical 
presentation of this topic is given by Hildebrand et al. (1977), while Agresti 
(2010) provides a more advanced and more extensive coverage. 

Statistical association as a qualitative relationship
In this chapter and the two previous ones, you have seen how to determine and 
measure a statistical association, and how to determine whether it is statistically sig-
nificant, which means that it reflects, with a reasonably large probability, an associa-
tion at the level of the whole population, not just the sample. You have also seen that 
the method used to determine whether there is an association and whether it is sig-
nificant depends on the scale of measurement: nominal, ordinal or quantitative. 

We are now faced with a more difficult question: if a statistical association is 
found, what does it really mean? In qualitative terms, does it indicate that one 
variable explains the other? Predicts the other? Is a cause of the other? This is the 
task we will now address: the qualitative interpretation of statistical associations.  

To illustrate the set of questions that arise, let us consider again the situation 
where the two variables were the level of socialization of workers with their peers 
in a factory and their desire to stay or quit their job. We found that these two 
variables were associated statistically.  But there could be several possible interpre-
tations of that statistical association. 

First interpretation. We can interpret the statistical association to mean that a high 
level of socialization induces people to want to stay in that job. The explanation could 
be that the job is therefore more enjoyable, and people want to continue working 
there. In a way, the high level of socialization can be considered to be a cause for 
staying in the job, and a low level of socialization a reason to leave. So, we are now 
talking about more than a statistical association: we are talking about a relationship 
between variables. This situation can be represented by the following diagram:

Level of socialization Desire to stay or quit

In symbolic terms, if we denote the level of socialization by X, and the desire to 
quit the job by Y, we could write: 

X   �  Y
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The following pattern illustrates the situation:

X   �  Z  �  Y

In other words, the level of socialization is used as an explanatory variable, to 
explain why people are more inclined to quit their jobs. Notice that this 
interpretation does not follow from the statistical analysis of the association 
between the two variables. This is clearly an interpretation, and it is not the only 
possible interpretation as we will see in what follows.

A more sophisticated interpretation can be thought of. There could be several 
factors that explain why people are satisfied with the jobs. For instance, one could 
think of the following factors influencing the variable Satisfaction with job: good 
pay, socialization with peers, good work environment, existence of a gym at the 
place of work, prospects for professional advancement. This would give the follow-
ing model: 

We could go a little further in that interpretation. If, in our theoretical frame-
work, we had used the variable Satisfaction with the job, denoted by Z, as a general 
concept, and the level of socialization as one indicator of that concept, we could 
now conclude the following relationships:

Level of socialization Satisfaction with job Desire to stay or quit

Level of socialization

Satisfaction 
with job

Desire to 
stay or quit

Good pay

Good work environment

Existence of a gym

Prospects for professional
advancement 

Second interpretation. We could reverse the preceding interpretation and say 
that if individuals tend to quit their job (they may perhaps want a better salary, or 
a more challenging job), they will not invest a lot of energy in socializing with their 
peers, since they know they are going to quit soon. Here the model is reversed: 

Y  � X
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In other words, the desire to quit the job is used to explain why people do not 
socialize a lot with their peers. This interpretation, like the previous one, does 
not follow automatically from the statistical association between the two 
variables. The statistical association allows such an interpretation, but it does 
not prove it. In fact, this could be one among many factors that explain why 
people do not socialize with their peers. There could definitely be other 
reasons as well. 

Third interpretation. The results of the statistical analysis are consistent with 
yet another interpretation, which asserts that both the desire to quit and the 
lack of socialization are the result of a third variable, such as Desire to get a 
better salary. If people think that their present salary is too low, and that they 
can get a better salary if they find another job, they may plan to quit and also 
they may decide not to invest too much energy and time in socializing with 
their peers. The model proposed here for explaining the statistical association 
is the following: 

                  X

Z

                  Y

Fourth interpretation. We could consider both variables as indicators of the 
general concept Satisfaction with job. This concept could be measured by sev-
eral indicators: level of socialization, intention to stay, satisfaction with the 
salary level, pleasant atmosphere in the office, relationship of support and 
cooperation with the management, etc. In this interpretation, the key concept 
is the overall satisfaction with the job. When people are globally satisfied, they 
are more likely to socialize with their peers, to consider staying in the job for 
a long time, etc.

We see that statistics does not tell you which interpretation to adopt. In fact, 
such interpretations must precede and inform the statistical analysis. This is what 
allows you to formulate a hypothesis, which you can then test statistically. 

Sometimes the qualitative relationship between two correlated variables is 
said to be spurious. This means that there is no logical link between the two 
variables, and that the statistical association is misleading. Such statistical asso-
ciation is often due to a third variable, and the conceptual links between each 
of the two correlated variables and the third one are completely unrelated. A 
classical example is that of height and salary. It could turn out that there is a 
statistical association between the height of an individual and his or her salary 
for a given sample. But if we break down the sample studied into men and 
women, we find that within each group there is no relationship. What happens 
is that, on one hand, men tend to be taller than women, and on the other hand, 
in most societies, the social structure favors men over women and the former 
end up tending to have higher salaries. The two kinds of associations (sex and 
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height; gender and salary) follow logics that are totally unrelated to each other, 
hence our conclusion that the statistical association between height and salary 
is spurious. However, it is not always clear whether two sets of causal relation-
ships are related or not, and one should be quite careful in interpreting a statis-
tical association as spurious or as meaningful.

A few more points need to be raised here. The first has to do with the definition 
of the various concepts and their operationalization. A definition is a statement 
that explains what is meant by the concept, what kinds of phenomena are desig-
nated by it. The operationalization of the concept is a concrete way of observing 
and measuring it. This measure must be both valid and reliable, as explained in 
Chapter 1. Unless you have a good definition of the concepts and you have thor-
oughly examined their operationalization, seeking advice and experience in the 
literature, you cannot come up with reasonable ways of studying the relationships 
between variables. 

But there is something else, which is much more important. We see here that in 
order to start thinking about relationships between variables, we drew a series of 
models of these relationships. A model is an abstract representation of a set of 
variables, together with a set of links between the variables. The links are qualita-
tive: a variable could be a dimension, or an indicator, of another variable. Or it 
could be one of its causes. Sometimes, in formulating the model, we are assuming 
that certain relationships exist between the variables. We are here formulating a 
theory. All of this precedes statistical analysis. And this is precisely the point I would 
like to emphasize: 

Any statistical analysis must be preceded by a clear and reasoned formulation of 
the theoretical framework on which it is based. 

This is a fundamental idea that should never be forgotten. The theoretical 
framework precedes any statistical analysis. This is why we can perform hypothesis 
testing: we have good (theoretical) reasons to believe that certain relationships 
exist, and we have a conceptual pattern of these relationships, and then we test 
whether, statistically, they are valid. 

These comments allow us now to introduce one more idea into the discussion. 
When we measure a statistical association, we are really interested in knowing 
whether, conceptually, it is valid. There are always associations between variables 
in a sample. The real issue is whether they reflect something more general, more 
abstract, which is valid for the whole population under study. When you study the 
relationship between a new teaching method in a class and the improvement in 
efficiency of learning that results from using this tool, you are not interested just 
in the particular class where you tested it. You want to establish that it is valid in 
general, that using it somewhere else will produce comparable results. So, statistical 
associations are interesting only when they are statistically significant. This is why 
some authors consider that there is a statistical association only when the observed 
links are statistically significant. We opted instead for the position that the notion 
of a link between two variables, as observed on a sample, must be clearly defined, 
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independently of the fact that they can or cannot be generalized to the whole 
population. 

The discussion above should help us understand better two distinct concepts, 
the concept of statistical association and the concept of relationship between 
variables. 

Statistical association is something that can be observed objectively and 
measured, as we have seen in the examples above. Basically, it means that if you 
know the score of an individual on a variable X you can make a better guess of 
his/her score on another variable Y than if you did not know the score on X. 
The method for establishing whether there is a statistical association or not 
depends on the level of measurement of the variables, which depends partly on 
the type of variables. 

 • For quantitative variables measured by a numerical scale, statistical association is 
called correlation. Two quantitative variables are correlated when the values of 
one of them can be predicted with some precision from the values of the other 
variable. For linear correlation, the points representing the individuals are close to 
a straight line, called the regression line. If the association is strong, the points are 
very close to the line, the correlation coefficient r is close to 1 or –1, and the 
predictions based on the regression line are generally good and they involve only 
a small error.

 • For qualitative variables measured by a nominal scale, statistical association is 
analyzed with the help of a contingency table, also called a two-way table or cross-
tabulation. Statistical association means that individuals who are in a given category 
of the independent variable are more likely to be in a specific category of the dependent 
variable than in other categories. There are ways of measuring the strength of the 
association, but they will not be discussed here.

 • If we want to study the statistical association between a qualitative variable X and a 
quantitative variable Y (measured by a numerical scale), we compare the average 
scores of Y across the various categories determined by X.

This situation is summarized in Figure 12.2. In each of these situations, there are 
specific ways of determining whether the observed association is statistically 
significant, which means that it is likely to be valid for the population as a whole 
and not just for the sample. 

Relationship between variables. This notion is used to describe the logical link 
between variables. The independent variable could be a cause of the dependent 
variable, or an explanatory factor of the dependent variable; they could both be 
effects of some other variable; or they may be two indicators of a concept, or 
even two aspects of the same phenomenon. Relationship between variables is a 
qualitative notion. It is a matter of interpretation, and it depends on the theoret-
ical framework used in the research and on the research question or the research 
hypothesis. For instance, if there is a statistically significant difference in the 
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average age when first married between people who do not have a college degree 
and those who do, it may mean that getting a college degree does have something 
to do with the fact people get married later on in their lives than the rest of the 

Figure 12.2  Method for measuring statistical association as a function of the 
measurement level of the variables

Correlation and regression
The value of r, the correlation 

coefficient, tells us whether the 
association is strong or weak, and 

whether it is positive or negative. The 
regression line (given by an equation as 
well as on a graph) helps us predict how 
an individual scores on the dependent 

variable when we know the score on the 
independent variable. When predict-

ing the values of a dependent variable, 
there is always an error, which is small 

when the correlation is strong.
CHAPTER 10

Scale vs Scale
(two quantitative variables)

Nominal vs Nominal
(two qualitative variables)

Nominal vs Scale
(one qualitative and one 
quantitative variable)

Crosstabs and chi-squared
We compare the row percentages 

across the categories of the independ-
ent variable. If the difference is big we 

say that there is a statistical association.
CHAPTER 11

Compare means, t-tests and ANOVA
We compute the mean of the 
quantitative variable for each 

category defined by the nominal 
variable separately. We compare these 
means to see if there is a big difference 

across categories.
CHAPTER 12

�

�

�

LEVEL OF MEASUREMENT PROCEDURE FOR ESTABLISHING 
OF THE VARIABLES THE ASSOCIATION 

How to measure statistical association?
It depends on the level of measurement of the variable
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population. But statistical association should not be automatically interpreted as 
meaning a causal link. 

Summary 
This chapter developed the notion of statistical association for the case where the 
independent variable is qualitative and the dependent variable is quantitative. All 
the tests seen here are variations on the approach used in t-tests. If you want to 
establish whether a relationship exists between a qualitative independent variable 
and a quantitative dependent variable, you start by computing the average scores 
on the dependent variable across the groups defined by the independent variable. 
If you notice a difference, this tells you that there is a relationship between the 
two variables at the level of the sample, but this relationship may not be statistically 
significant. To be statistically significant, the differences observed between group 
averages should not be due to the randomness of sampling. In order to establish 
whether this is the case, you compute the F-statistic (or get SPSS to do it for you). 
You also calculate the level of significance, which is the probability of getting this 
specific F-value under the null hypothesis of no difference between the means. If 
the significance level is less than 0.05, you conclude that such an F-value is so rare 
under the null hypothesis that you prefer instead to accept the alternative hypoth-
esis of a difference between the population means of the various groups. 

In practical terms, several procedures can be followed to establish whether 
observed differences are statistically significant, depending on the number of inde-
pendent variables and the number of classes in the independent variables. We 
considered three situations: 

One qualitative independent 
variable, with two categories only

Independent samples t-test. Levene’s test of equality of 
variances tells you whether to assume equal variances 
between the two groups or not.

One qualitative independent 
variable, with several categories

One-way ANOVA, with post-hoc tests if the ANOVA test is 
statistically significant, to determine which of the groups 
differ significantly.

More than one qualitative 
independent variable, with 
possibly more than two categories 
each

General Linear Model → Univariate. Post-hoc tests are 
conducted for the variables that have more than two 
categories. Main and interaction effects can be estimated. 

All cases You can use the Compare Means procedure and check the 
option that gives you ANOVA tables, but the output is less 
detailed than in the other procedures.

In all these cases, a measure of the strength of the association, called the effect 
size, can be computed. When comparing means, the effect size is measured by eta 
squared. The association is considered weak if eta squared is 0.01, moderate if it is 
0.06, and strong if it is 0.14. 
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 • Statistical association between a 
qualitative independent variable and a 
quantitative dependent variable

 • Prediction

 • Dependent variable

 • Independent variable

 • Effect size 

 • Interaction between independent 
variables

 • t-test 

 • Independent samples t-test

 • ANOVA (one-way, two-way, multi-way, 
or one-factor, two-factor, multi-factor)

 • F-statistic

 • Main effect

 • Simple main effect

 • Interaction effect

 • Post-hoc tests

 • Levene’s test of equality of variance

SPSS allows you to do many more tests. The principles learned in the chapter 
can easily be extended to understand the various adjustments made, when for 
instance the individuals in the samples are paired. This changes slightly the 
procedure and the calculation done by SPSS, but it does not alter the basic 
approach: you observe a difference between groups, and then you use some 
statistic (usually the F-statistic) to determine whether that difference is statisti-
cally significant. 

This chapter also made some remarks on the notion of statistical association in 
general. Statistical association, independently of the level of measurement of the 
variables, is not to be confused with a qualitative relationship between the vari-
ables. Sometimes the relationship is spurious. But it could be a causal relationship, 
or some other kind of qualitative relationship. This depends on the theoretical 
framework that informs the statistical exploration. This is perhaps the most 
important lesson to remember. Statistics by themselves are meaningless. They can 
only be interpreted within a given conceptual or theoretical framework. 
Sometimes this framework is implicit: we take it so much for granted that we do 
not think about it, and we do not question it. Our conclusion suggests that you 
should think about it and make it explicit, for this is what will give meaning and 
relevance to your statistics. 

Key words

SPSS tutorial
We will illustrate the t-tests and ANOVA procedures with the ANOVA_ex1.sav data set, available 

on the website of this book. The data is fictitious and designed simply to illustrate the procedures. 

It contains three quantitative variables: Grade in English, Grade in Psychology, and High School 

Average. It also contains two qualitative variables: Sex and Class (three categories). Here are 

the basic procedures used to analyze the relationship between one or two qualitative independ-

ent variables and one quantitative dependent variable. 
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The Compare Means procedure

Let us start with one independent variable. 

1. Select Analyze � Compare Means � Means….  

2.  Place the variable Grade in Psychology in the Dependent List box, and the variable 

Sex in the Independent List box. 

3.  Click on Options…. Keep the Mean, Number of Cases, and Standard Deviation in 

the Cell Statistics box (they should be there already; if not, move them from the 

Statistics box on the left to the Cell Statistics box). At the bottom of the table, check 

the box for Anova table and eta, and click on Continue. 

4. Click on OK. 

This produces Tables 12.9–12.11. 

Report

Grade in Psychology

Sex Mean N Std. Deviation

Male 58.24 34 17.722

Female 70.66 35 16.823

Total 64.54 69 18.250

Table 12.9   The report table of the Compare Means 
procedure

ANOVA Table

Sum of 
Squares df

Mean 
Square F Sig.

Grade in 
Psychology 
* Sex

Between Groups (Combined) 2661.156 1 2661.156 8.921 .004

Within Groups 19986.003 67 298.299

Total 22647.159 68

Table 12.10   The ANOVA table of the Compare Means procedure with Sex as the 
independent variable

Measures of Association

Eta Eta Squared

Grade in Psychology * Sex .343 .118

Table 12.11   The Measures of Association table of the 
Compare Means procedure
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Table 12.9 tells you that female students in this example have a much higher average in 

psychology than men, indicating that, at the level of the sample, there is a statistical association 

between Sex and Grade in Psychology, but the table does not tell you whether such a difference 

is statistically significant. Table 12.10 does. It gives you the ANOVA results: the F-statistic is 

8.921, and it tells you that a value that large, or larger, would occur with a probability less than 

0.004. Therefore, you accept the conclusion that this difference is statistically significant – that it 

is valid for the population at large. And in drawing this conclusion, you could be wrong at most 

4 times in a thousand. The eta squared statistic is equal to 0.118, which indicates a rather strong 

effect. 

In step 4 above, you could have pasted the commands into the Syntax window instead of 

clicking on OK. You would have obtained the following commands: 

MEANS TABLES=gradepsy BY sex

/CELLS MEAN COUNT STDDEV

/STATISTICS ANOVA.

The commands are useful because one could run the procedure again with other variables by 

making minimal changes in the commands. 

For instance, you could replace the variable Sex by the variable Group, and run the command. 

You would see the variation in the average grade for the three groups (72.79, 69.36, and 48.60, 

respectively), and that these differences are statistically significant (F = 15.686; p < 0.001). Eta 

squared is 0.322, which indicates a very strong effect of the Group variable on the average 

grades in psychology. 

The Compare Means procedure with two independent variables

The same procedure could be run with two independent variables. The procedure is similar to 

the previous Compare Means procedure: 

1. Select Analyze � Compare Means � Means….  

2.  Place the variable Grade in Psychology in the Dependent List box, and the variable Sex 

in the Independent List box. 

3.  In the Layer box, click on Next and place the variable Class in the Independent List 

box. 

4.  Click on Options…. Keep the Mean, Number of Cases, and Standard Deviation in the 

Cell Statistics box (they should be there already; if not, move them from the Statistics 

box on the left to the Cell Statistics box). At the bottom of the table, check the box for 

Anova table and eta, and click on Continue. 

5. Click on Paste. 

The commands you get are slightly different from the previous case:

MEANS TABLES=gradepsy BY sex BY group

/CELLS MEAN COUNT STDDEV

/STATISTICS ANOVA.

12_Antonius_CH-12.indd   275 10/10/2012   5:51:06 PM



INTERPRETING QUANTITATIVE DATA WITH SPSS276

Table 12.12 shows the resulting Report table. 

Report

Grade in Psychology

Sex Class Mean N Std. Deviation

Male 1 66.73 11 12.042

2 60.44 9 16.591

3 50.14 14 19.529

Total 58.24 34 17.722

Female 1 78.08 12 13.283

2 74.38 16 10.714

3 49.43 7 17.897

Total 70.66 35 16.823

Total 1 72.65 23 13.703

2 69.36 25 14.494

3 49.90 21 18.550

Total 64.54 69 18.250

Table 12.12   The Report table of the Compare Means procedure 
when there are two layers of independent 
variables

Table 12.12 shows the resulting Report table. It gives you the average for each category of the 

two independent variables, as well as for their combination. For instance, you can read that 

males scored on average 58.24 in psychology, and that males in group 1 scored 66.73 on 

average. The other tables are the same as for the case of one independent variable and are 

interpreted the same way. 

The t-test for independent samples

The Compare Means procedure does not allow you to have outputs as detailed as the t-test 

or the ANOVA procedures. The t-test is formulated as a hypothesis testing procedure, and you 

can select the desired level of confidence. Here is how the t-test procedure works for independ-

ent samples. Let us take again the variables Sex and Grades in Psychology in the same data 

file as above. 

1. Select Analyze � Compare Means � Independent-Samples T Test.  

2. Place the variable Grade in Psychology in the Test Variable(s) box, and the variable Sex in 

the Grouping Variable box. 

3. Click on the Define Groups... button and input 1 for Group 1 and 2 for Group 2. This button 

actually allows you to compare any two groups when your variable has several grouping 
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categories. But you can only compare two at a time. You could also use a quantitative variable 

as the grouping variable, and choose a cut-point to separate your sample into two groups, 

above and below this cut-point. 

4. Click on the Options… button to determine the required level of confidence (by default it is 

95%), and click on Continue. 

5. Click on Paste if you want to save the commands for future use and run them, or OK if you 

just want to run the procedure directly. 

The commands are as follows: 

  T-TEST GROUPS=sex(1 2)

  /MISSING=ANALYSIS

  /VARIABLES=gradepsy

  /CRITERIA=CI(.95).

If you run them, you get Tables 12.13 and 12.14. 

Group Statistics

Sex N Mean Std. Deviation Std. Error Mean

Grade in Psychology Male 34 58.24 17.722 3.039

Female 35 70.66 16.823 2.844

Table 12.13   The Group Statistics table of the Independent-Samples T Test 
procedure

Independent Samples Test

Levene’s Test 
for Equality 
of Variances t-test for Equality of Means

F Sig. t df
Sig. 

(2-tailed)
Mean 

Difference
Std. Error 
Difference

95% Confidence 
Interval of the 

Difference

Lower Upper

Grade in 
Psychology

Equal 
variances 
assumed

.070 .792 –2.987 67 .004 –12.422 4.159 –20.723 –4.121

Equal 
variances 
not 
assumed

–2.985 66.559 .004 –12.422 4.162 –20.730 –4.113

Table 12.14   The Independent Samples Test table of the Independent-Samples T Test 
procedure
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As explained before, we first look at the Levene’s test, and we conclude from it that we can 

assume that the variances between the groups are equal. The t-test proper gives a significance 

level of 0.004, which is the same as before and has the same interpretation. We can assert, 

therefore, that there is a statistically significant association between the variables Sex and 

Grades in Psychology, that is, that the average grade in psychology for women is different from 

the average for men. 

The one-way ANOVA procedure

We will now see the ANOVA procedure to test the hypothesis that the grades in Psychology differ 

significantly between the three classes. 

1. Select  Analyze � Compare Means � One-Way ANOVA.  

2.  Place the variable Grade in Psychology in the Dependent List box, and the variable 

Class in the Factor box. Click on the Post Hoc… button. You get the window shown 

in Figure 12.3.

Figure 12.3  The Post Hoc dialog box

3.  You have four choices to make. You must choose a significance test for the case 

where the variances are equal. In this case, you must decide whether to contrast the 

groups with the first one or the last one. Here, it is the last that has been chosen.  You 

must then choose which test to conduct if the variances were not equal. And finally, 

you must choose the desired level of significance. We will not discuss the advantages 

of each of these tests: you can find such a discussion in the SPSS Help menu. Make 

the choices as indicated in Figure 12.3.
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4.  Click on the Options… button and check Descriptive and Homogeneity of 

variance test. Click on Continue. 

5. Click on Paste to see what the commands look like and run them. 

Here are the commands: 

  ONEWAY gradepsy BY group

  /STATISTICS DESCRIPTIVES HOMOGENEITY 

  /MISSING ANALYSIS

  /POSTHOC=C DUNNETT ALPHA(0.05).

The first table in the output gives you the mean grade for every group, and several other statis-

tics, including a confidence interval for every population group mean. Notice that the confidence 

intervals for groups 1 and 2 overlap, but none of them overlaps with that of group 3. This means 

that the difference in population means between groups 1 and 2 are not statistically significant, 

but the differences with group 3 are. This will be confirmed by the other outputs. The test of 

homogeneity of variance gives us a Sig. of 0.157, which means that we can assume that the 

variances of the three populations (from which the three groups come) are equal. The ANOVA 

table gives a Sig. of 0.000, which means you can safely assume that the three population means 

are indeed different. You now need to examine the differences of two groups at a time, which are 

given in the Multiple Comparisons table (Table 12.15). 

Post-hoc tests are done only if the overall ANOVA test is statistically significant. The aim of 

post-hoc tests is to identify which groups differ significantly when we compare them two at a 

time. The first remark is that there are two sets of results. The Dunnett C-test is run when the 

variances are not equal. For this reason, while differences that are considered significant are 

flagged, the precise risk of error in making that assessment is not provided. The Dunnett 

t-test is run when variances are equal. It does tell us that groups 1 and 2 differ significantly 

Multiple Comparisons

Dependent Variable Grade in Psychology

(I) Class (J) Class
Mean Difference 

(I – J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Dunnett C 1 2 3.292 4.070 –6.90 13.49

3 22.747* 4.955 10.24 35.25

2 1 –3.292 4.070 –13.49 6.90

3 19.455* 4.979 6.91 32.00

3 1 –22.747* 4.955 –35.25 –10.24

2 –19.455* 4.979 –32.00 –6.91

Dunnett t 
(2-sided)

1 3 22.747* 4.707 .000 12.13 33.37

2 3 19.455* 4.617 .000 9.04 29.87

*The mean difference is significant at the 0.05 level.

Table 12.15  The Multiple Comparisons table of the post-hoc tests
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from group 3, but it does not tell us whether they differ from each other. The overlap of the 

confidence intervals tells us they do not differ significantly. In this case, since the Levene test 

told us that the variances could be considered equal, we only need to look at the Dunnett 

t-test. 

Try to rerun the test with the first group considered as the reference group. All the conclusions 

drawn above should be confirmed. 

Conducting a two-way ANOVA

We will now examine the combined effect of the variables Sex and Class on grades in psychol-

ogy. We know from the previous analyses that each of these variables does have an effect on 

grades in psychology.  But we do not know whether they interact, which means that the variable 

Sex affects each of the three groups differently, or, to put it another way, whether the variable 

Class has a different effect on men and women. In other words, we have an implicit model here, 

which states that: 

Grades in Psychology = Constant factor + effect of Sex + effect of Class + effect of the 
interaction Sex*Class + other effects, not accounted for. 

Here is the procedure: 

1. Select  Analyze � General Linear Model � Univariate….  

2.  Place the variable Grade in Psychology in the Dependent Variable box, and the 

variables Class and Sex in the Fixed Factor(s) box. Click on the Post Hoc… button. 

You get the window shown in Figure 12.4.

Figure 12.4  The Post Hoc dialog window for the univariate ANOVA test. Notice 
that the variable group should be placed in the Post Hoc Tests for: 
box, on the right
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3.  You must choose a significance test for the case where the variances are equal, and 

you must decide whether to contrast the groups with the first or last one. In this 

example, we have chosen the Dunnett test, and we have chosen the Last category 

as the Control Category, as shown in Figure 12.4.

4.  Click on the Options… button, place the (Overall) factor in the Display Means for: 

box, and check Descriptive and Homogeneity of variance test. Click on Continue. 

5. Click on Paste to see what the command looks like and run it. 

You should be able to easily interpret the first three tables of the output, explained before (and 

not reproduced here). The fourth one is the most important one. It tells you the effect of each 

one of the explanatory factors (a constant, Sex, Class, Sex*Class, and Error, that is, other factors 

not taken into account). Here it is. 

Tests of Between-Subjects Effects

Dependent Variable Grade in Psychology

Source
Type III Sum of 

Squares df Mean Square F Sig.

Corrected Model 9272.368a 5 1854.474 8.735 .000

.000

.000

.076

.106

Intercept 242148.942 1 242148.942 1140.607

group 6453.992 2 3226.996 15.200

sex 689.066 1 689.066 3.246

group * sex 988.676 2 494.338 2.329

Error 13374.791 63 212.298

Total 310027.000 69

Corrected Total 22647.159 68

a. R Squared = .409 (Adjusted R Squared = .363)

Table 12.16   The two-way ANOVA table that tests the significance and the 
effect of each of the factors

We can see here that the model as a whole is significant. We can also see that only one of 

the two independent variables, the group, has a significant impact on the dependent variable. 

Sex and the interaction between sex and group do not. The Sig. value for variable sex is 0.076, 

which is more than the threshold of 0.05. The Sig of the interaction is 0.106, a risk far too high 

to say that the interaction does have an effect on grades in psychology. 

You may have noticed something intriguing. When you run a test on the variable sex alone, 

it turns out to have a significant effect. But when you include both sex and group, only the latter 

has a significant effect. How come the effect of the factor sex disappears (ceases to become 

significant) when you include the group in the analysis? The answer is that men and women 

are not assigned to the three groups in equal proportions. So, part of the effect of the variable 

sex manifests itself through the variable group, thus rendering the variable sex less useful in 

the explanation.  
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Exercise 1. Repeat all the analyses proposed above for the variable Grade in English, then, 

separately, for the variable High School Average. Determine whether each of the two independ-

ent variables explains the variations when analyzed on its own, then use the two-way ANOVA 

procedure to study the two independent variables together and their interaction. A clarification is 

in order. What does it mean to study the effect of the class you are in when attending college on 

your high school average? Of course this is the wrong way to ask the question. A statistical 

association of the class variable, if found, would not mean that there is an effect of the class you 

are in on your high school average. It would mean, rather, that the groups under study are not 

formed of students having the same degree of preparedness, since their past performance in 

high school differed significantly. 
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