

ANOVA

© Nick Lee and Mike Peters 2016.

QUESTION 1.

You have been asked by your local sports club to compare three brands of cricket balls in relation to the distance they travel. The balls are chosen at random and are 'bowled' by a machine used during practice sessions. The distance each ball travels is recorded and shown in the table below.

Brand A	Brand B	Brand C
246	243	265
231	246	260
236	243	265
217	235	253
246	235	291

These data can be analysed using \qquad factor \qquad .
Construct the null and alternative hypotheses:
H_{0} : \qquad
H_{1} : \qquad
State three assumptions you can make:
Assumption 1: \qquad
Assumption 2: \qquad
Assumption 3: \qquad

Complete the following:
The variance for brand $\mathrm{A}=$ \qquad
The variance for brand $\mathrm{B}=$ \qquad
The variance for brand $\mathrm{C}=$ \qquad
The sum of squares between groups $=$ \qquad
The sum of squares within groups = \qquad
The total sum of squares $=$ \qquad
The between groups degrees of freedom, $d f_{\mathrm{b}}=$ \qquad
The within groups degrees of freedom, $d f_{w}=$ \qquad
The total degrees of freedom, $d f=$ \qquad
The mean sum of squares for the model, $F_{\text {test }}=\frac{M S_{M}}{M S_{R}}=$ \qquad
The mean sum of squares for the residuals, $M S_{R}=$ \qquad $=$ \qquad
The value for $F_{\text {test }}=\frac{M S_{M}}{M S_{R}}=$ \qquad
The value for $F_{\text {stat }}=$ \qquad $=$ \qquad
The evidence suggests that the null hypothesis should be rejected/accepted (delete as appropriate) since
\qquad > \qquad _.

The interpretation of this is that at least one of the \qquad is different from the others.

QUESTION 2.

The headteacher of your old school has heard that you are an expert statistician. She has asked you to help her provide some evidence that ethnicity has no impact on the mathematics attainment of year 7 pupils. You decide to look at four ethnic groups (labelled A,B,C and D in the table below) and three classes with each class having its own teacher. The table below shows the data you collected when the children were given a maths test.

	GP A	GP B	GP C	GP D
Teacher 1	4.5	6.4	7.2	6.7
Teacher 2	8.8	7.8	9.6	7.0
Teacher 3	5.9	6.8	5.7	5.2

Your task is find out if there is a significant difference due to the teacher and find out if the ethnicity of the child is significant.

Construct the two null and two alternative hypotheses:
Rows:
$H_{0}^{\text {row }}: \mu_{1}=$ \qquad $=$ \qquad
$H_{1}^{\text {row }}: \mu_{1} \neq$ \qquad \neq

Columns:
$H_{0}^{c o l}: \mu_{1}=$ \qquad $-$ \qquad
$H_{1}^{c o l}: \mu_{1} \neq$ \qquad \neq \qquad

The row means = \qquad
The column means = \qquad
The grand mean $=$ \qquad
The variation of the row means from the grand mean $v_{r}=$ \qquad
The variation of the column means from the grand mean $v_{c}=$ \qquad
The total variation $v=$ \qquad
The random variation $v_{e}=$ \qquad
The row $d f=$ \qquad
The column $d f=$ \qquad
Complete the following:
For the row means at the 0.05 level of significance $F_{\text {stat }}=$ \qquad
The calculated F value $=$ \qquad -

Since \qquad $>$ \qquad , the null hypothesis can be accepted/rejected (delete as appropriate).
The conclusion is at the 0.05 significance level there is an signicant/insignicant (delete as appropriate) dierence in the test results due to \qquad
For the column means at the 0.05 level of significance $F_{\text {stat }}=$ \qquad
The calculated F value $=$ \qquad
Since \qquad $>$ \qquad the null hypothesis can be accepted/rejected (delete as appropriate).
The conclusion is at the 0.05 significance level there is a significant/insignificant (delete as appropriate) difference in the test results due to \qquad -.

QUESTION 3.

The figure below shows the output from Excel when a two-factor experiment without replacement was carried out.

Anova: Two-Factor Without Replication						
SUMMARY	Count	Sum	Average	Variance		
a	4	24.8	6.2	1.39		
b	4	33.2	8.3	1.29		
c	4	23.6	5.9	0.45		
cr1	3	19.2	6.4	4.81		
cr2	3	21	7	0.52		
cr3	3	22.5	7.5	3.87		
cr4	3	18.9	6.3	0.93		
ANOVA						
Source of Variation	$S S$	$d f$	$M S$	F	P-value	Fcrit
Rows	13.68	2	6.84	6.24	0.03	5.14
Columns	2.82	3	0.94	0.86	0.51	4.76
Error	6.58	6	1.10			
Total	23.08	11				

Looking at the ANOVA table, in the box below give an explanation for each of the sources of variation (think about the grand mean):

In the box below give an explanation of F and $F_{\text {crit }}$ and describe their relationship

In the box below explain what the p-value indicates:

The p-value can be used to

QUESTION 4.

The sports club (from question 1) would now like to know which brands of cricket balls are different. What sort of test could you do to compare the means of the three brands? \qquad
What specific test could you use to compare the means? \qquad
The value of the least significant difference (LSD) statistic comparing brand A with brand B is found by:

$$
\mathrm{LSD}=t_{\alpha / 2} \sqrt{M S_{R}\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}=
$$

\qquad
The null hypothesis is rejected if $\left|\bar{x}_{i}-\bar{x}_{j}\right|>$ LSD.

The value of the LSD statistic comparing brand A with brand C is found by:

$$
\mathrm{LSD}=t_{\alpha / 2} \sqrt{M S_{R}\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}=
$$

\qquad
The null hypothesis is rejected if $\left|\bar{x}_{i}-\bar{x}_{j}\right|>$ LSD.
The value of the LSD statistic comparing brand B with brand C is found by:

$$
\mathrm{LSD}=t_{\alpha / 2} \sqrt{M S_{R}\left(\frac{1}{n_{i}}+\frac{1}{n_{j}}\right)}=
$$

The null hypothesis is rejected if $\left|\bar{x}_{i}-\bar{x}_{j}\right|>$ LSD.

MINI PROJECT

The university you work for are looking at pre-university preparatory courses. The management are looking at two programmes: one is a 10 day condensed course and the other a 30 day course. They are also considering two delivery options: one is the programme being taught in a classroom, just like any 'traditional' programme and the other delivered on line via the Internet.

They would like you to perform a statistical analysis and advise them which option would potentially improve the courses.

You collect data from 10 randomly selected students studying on each of the programmes. The table below shows the collected data:

Course delivery	$\mathbf{1 0}$ day	10 day	$\mathbf{3 0}$ day	30 day
Traditional	26	18	34	28
Traditional	27	24	24	21
Traditional	25	19	35	35
Traditional	21	20	31	29
Traditional	21	18	28	26
On-line	27	21	24	21
On-line	29	32	16	19
On-line	30	20	22	19
On-line	24	28	20	24
On-line	30	29	23	25

The management want a report which will tell them if there is a statistically significant interaction between the length of course and the type of course at a 0.05 level of significance.

Your report should describe the statistical analysis technique you have chosen and why you chose to use it. It should also contain sufficient information so the management can decide from four options:

Option 1: Both courses delivered in a 'traditional' classroom.
Option 2: Both courses delivered online.
Option 3: The 10 day course delivered online and the 30 day course delivered in a classroom.
Option 4: The 10 day course delivered in a classroom and the 30 day course delivered online.

And finally...

Interacting with statistics can be ANOVER F-test!

