
Chapter 15

Hamiltonian Monte Carlo

15.1 Cerebral malaria: coding up samplers

Suppose you work for the WHO researching malaria. In particular, it is your job to produce a
model for the number of cases of cerebral malaria in a large country. Cerebral malaria is one of
the most severe complications resulting from infection with Plasmodium falciparum malaria, and
without treatment invariably causes death. However, even for patients receiving treatment there is
still a significant chance of permanent cognitive impairment.

You decide to model the number of cases of cerebral malaria (X = 5) as being from a joint normal
distribution along with the number of all malaria cases (Y = 20). The mean number of cases of
cerebral malaria is µc, and the mean cases of all malaria is µt. If we assume an (improper) uniform
prior distribution on these quantities and assume that the correlation between cerebral and total
cases is known (ρ = 0.8) the posterior is:

(
µt
µc

)
∼ N

[(
20
5

)
,

(
2 0.8

0.8 0.5

)]

where all quantities are measured in units of “000s”.

Note that this example does not test your ability to do Bayesian inference (because we have already
provided the exact form of the posterior distribution). Rather its purpose is allow you to compare
the performance of a number of different sampling algorithms.

Problem 15.1.1. Use your statistical software of choice generate 100 independent samples of
(µt, µc). Draw a scatter plot of your (µt, µc) samples, with lines connecting consecutive points.
How close are the sample-estimated means to the true means? (Hint: to do this in R you will need
to use the MASS package:

library(MASS)

1

2 CHAPTER 15. HAMILTONIAN MONTE CARLO

Sigma <- matrix(c(2, 0.8, 0.8, 0.5), 2, 2)

mvrnorm(n=100, c(20, 5), Sigma)

)

The independent sampler is the gold standard sampling routine here. Its samples quickly traverse
the posterior space (Figure 15.2), meaning that we get an accurate (and unbiased) estimate of the
posterior mean for only 100 samples (Figure 15.1).

5 10 15 20
0

10

20

30

40

mean of μt or μc

fr
eq
ue
nc
y

μt
μc

Figure 15.1: The sampling distribution for 100 samples from the posterior using the independent
sampler.

Problem 15.1.2. Code up a Random Walk Metropolis sampler for this example. This is composed
of the following steps:

1. Create a proposal function that takes a current value of θ = (µt, µc) and outputs a proposed
value of these using a multivariate normal centred on the current estimates. (Here use a
multivariate normal proposal with an identity covariance matrix.)

2. Create a function which takes as inputs θcurrent and θproposed, and outputs the ratio of the
posteriors of the proposed value to the current one (Hint: to do this in R you will need to
use the following to calculate the value of the posterior at (x, y):

library(mvtnorm)

Sigma <- matrix(c(2, 0.8, 0.8, 0.5), 2, 2)

dmvnorm(c(x, y), c(20, 5), Sigma)

).

15.1. CEREBRAL MALARIA: CODING UP SAMPLERS 3

3. Create an accept/reject function which takes as inputs θcurrent and θproposed, then uses the

above ratio function to find: r = θproposed

θcurrent ; then compares r with a uniformly-distributed
random number u between 0 and 1. If r > u =⇒ output θproposed; otherwise output θcurrent.

4. Combine the proposal function along with the accept/reject function to make a function that
takes as input θcurrent, proposes a new value of θ, then based on r moves to that new point
or stays in the current position.

5. Create a function called “RWMetropolis” that takes a starting value of θ and runs for n steps.

Use your “RWMetropolis” function to generate 100 samples from the posterior starting from
(µt, µc) = (10, 5). Draw a line plot of your (µt, µc) samples. How do your estimates of the posterior
mean from Random Walk Metropolis compare with the true values? Why is there a bias in your
estimates, and how could this be corrected?

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Independent

●
●●●

●
●●●

●

●●●●●●

●●●●●●●●●●●●

●●

●

●

●●●●

●●●●●●

●●●●●●●●

●

●●●●

●●●●●●●●●●

●●●

●●●●

●

●
●●●●

●●●●

●

Random Walk Metropolis

●
● ●

● ●

●●
●●

●●

●●

●●

● ●

● ●

●●

● ●

●●

● ●●●

●●

●●

●●

● ●
●●

● ●

●●

●●

●●
● ●

●●

● ●

●●

●●● ●

● ●
●●

●●

●●

●●

● ●

● ●
●●

● ●

● ●

●●

●●

● ●

●●

●●
● ●

●●

●●

●●

●

Gibbs

●

●

●●

●●

●●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●

●

●
●

●●

●

●●●
●●
●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

HMC

Figure 15.2: 100 samples from the posterior for the malaria example using four different sampling
algorithms.

The Random Walk Metropolis sampler is significantly less efficient at exploring posterior space
(Figure 15.2) than the independent sampler. This is because of its random walk nature; it essentially

4 CHAPTER 15. HAMILTONIAN MONTE CARLO

ignores the posterior geometry! It is also because dependent sampling, in general, will never match
the performance of an independent sampler.

The estimates of the mean of µt should be downwardly-biased (Figure 15.3) because we started the
sampler at µt = 10 < 20. What we should do is remove the first half (or so) iterations of the chain,
where it has yet to converge to a stationary distribution.

5 10 15 20
0

10

20

30

40

50

mean of μx or μy

fr
eq
ue
nc
y

μx
μy

Figure 15.3: The sampling distribution for 100 samples from the posterior using Random Walk
Metropolis sampler.

Problem 15.1.3. For your 100 samples using Random Walk Metropolis calculate the percentage
of accepted steps.

This is about 30% (Figure 15.4). This relatively low acceptance rate (although not far from opti-
mality for RWM) means that the sampler is slow to explore the posterior.

Problem 15.1.4. Create a function that calculates Gelman’s R̂ for each of (µt, µc) using:

R̂(t) =

√
W (t) + 1

T (B(t)−W (t))

W (t)
(15.1)

where,

W (t) =
1

m

m∑
j=1

s(t)2j (15.2)

measures the within-chain variance at time t averaged over m chains, and s(t)2j is the sample
variance of chain j. And:

15.1. CEREBRAL MALARIA: CODING UP SAMPLERS 5

0.20 0.25 0.30 0.35 0.40 0.45
0

5

10

15

20

25

30

35

acceptance %

fr
eq
ue
nc
y

Figure 15.4: The acceptance rate across 200 Random Walk Metropolis Markov Chains, in each case
using 100 steps.

B(t) =
t

m− 1

m∑
j=1

(θ(t)j − θ(t))
2 (15.3)

measures the between-chain variance at time t. Here θ(t)j is the average value of a parameter in

chain j, and θ(t) is the average value of a parameter across all chains. (Hint 1: first create two
separate functions that calculate the within and between chain variance. Hint 2: you will obtain a
value of R̂ for each of (µt, µc).)

To do this first create a function in R that calculates the within chain variance,

fWithin <- function(lSamples){

return(mean(sapply(lSamples, var)))

}

Testing it

lSamples <- lapply(seq(1, 10, 1), function(i) rbinom(100, 100, 0.5))

fWithin(lSamples)

Then another that calculates the between chain variance,

fBetween <- function(lSamples){

lMean <- sapply(lSamples, mean)

aMean <- mean(lMean)

6 CHAPTER 15. HAMILTONIAN MONTE CARLO

m <- length(lSamples)

t <- length(lSamples[[1]])

return((t / (m - 1)) * sum((lMean - aMean) ^ 2))

}

Then putting these together we get a function to calculate R̂,

fRhat <- function(lSamples){

W <- fWithin(lSamples)

B <- fBetween(lSamples)

t <- length(lSamples[[1]])

return(sqrt((W + (1 / t) * (B - W)) / W))

}

Problem 15.1.5. Start all eight chains at (µt, µc) = (20, 5) and calculate R̂ for a per chain sample
size of 5. Does this mean we have reached convergence?

If the chains all begin in the same area of parameter space =⇒ we get a false impression of
convergence. This is why it’s so important to start them at over-dispersed locations.

Problem 15.1.6. Using eight chains calculate R̂ for each of (µt, µc) for a sample size of 100. This
time make sure to start your chains in overdispersed positions in parameter space. Use a random
number from a multivariate normal centred on the posterior means with a covariance matrix of 40
times the identity matrix.

The chains should be starting at dispersed locations in parameter space (Figure 15.5), otherwise
the value of R̂ obtained will be biased downwards. After a sample size of 100 the chains should be
nearing convergence, and should have a value of R̂ of about 1.05-1.06 (Figure 15.6).

Problem 15.1.7. After approximately how many iterations does Random Walk Metropolis reach
R̂ < 1.1?

After about 150-250 iterations the chains should have roughly reached R̂ < 1.1 (Figure 15.6).

Problem 15.1.8. The conditional distributions of each variable are given by:

µt ∼ N (20 + 1.6(µc − 5), (1− 0.82)2)

µc ∼ N (5 + 0.4(µt − 20), (1− 0.82)0.5)

Use this information to code up a Gibbs sampler, again starting at (µt, µc) = (10, 5). (Hint: in
R use rnorm, or equivalent to create two functions: one that produces draws of µt given µc; and
the other that produces draws of µc given µt. Then create a function that cycles between these
updates. Make sure to always draw samples using the most recent values of (µt, µc)).

15.1. CEREBRAL MALARIA: CODING UP SAMPLERS 7

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

iteration #

μ
t

Figure 15.5: The path taken by each chain in µt space.

Problem 15.1.9. Use your Gibbs sampler to draw 100 samples. Draw a scatter plot of your
(µt, µc) samples with lines connecting consecutive points. Discarding the first 50 observations, how
do the estimates of the mean of each parameter compare with their true values?

After a short warm-up period the samples from the Gibbs algorithm quickly converge towards the
posterior (Figure 15.2), with the resultant estimates of the mean reflecting this (Figure 15.7).

Problem 15.1.10. Generate 200 samples from each of your Random Walk Metropolis and Gibbs
samplers. Discard the first 100 observations of each as warm-up. For each calculate the error in
estimating the posterior mean of µt. Repeat this exercise 40 times; each time recording the error.
How does their error compare to the independent sampler?

Each of the three algorithms is essentially unbiased after we discard the warm-up (Figure 15.8). I
obtained an error of about 0.12 for the independent sampler; 0.51 for Random Walk Metropolis;
and 0.40 for Gibbs.

Problem 15.1.11. Repeat Problem 15.10 to obtain the average error in estimating the posterior
mean of µt across a range of sample sizes n = 5 to n = 200.

The error from Random Walk Metropolis and Gibbs is always higher than the independent sampler
(Figure 15.9). After a sample size of about 20, the Gibbs outperforms Random Walk Metropolis.

Problem 15.1.12. Using the results from the previous question estimate the effective sample size
for 150 observations of the Random Walk Metropolis and Gibbs samplers.

8 CHAPTER 15. HAMILTONIAN MONTE CARLO

50 100 150 200 250 300
0

1

2

3

4

iteration #

R

Figure 15.6: The values of R̂ for µt across 16 different replicates, each with 8 chains running in
parallel.

These estimates will be somewhat noisy, but I obtained an equivalent sample size of 11 for the
Gibbs and 7 for RWM (Figure 15.9).

Problem 15.1.13. What do the above results tell you about the relative efficiency of each of the
three samplers?

The Gibbs is more efficient than RWM. Although both are quite inefficient compared to the inde-
pendent sampler; each with an effective sample size far less than 10% actual sample size.

Problem 15.1.14. Code up a Hamiltonian Monte Carlo sampler for this problem. (Alternatively,
use the functions provided in the R file “HMC scripts.R” adapted from [1]). Use a standard
deviation of the momentum proposal distribution (normal) of 0.18, along with a step size ε = 0.18
and L = 10 individual steps per iteration to simulate 100 samples from the posterior. How does
the estimate of the mean compare with that from the Independent, Random Walk Metropolis and
Gibbs samplers?

The performance of HMC is comparable to that of the independent sampler (Figure 15.9), and
hence considerably more efficient at estimating the posterior mean.

Problem 15.1.15. What is the acceptance rate for HMC? How does this compare with RWM?

Based on 1,000 samples I obtain an acceptance rate of above 99% for HMC.

15.1. CEREBRAL MALARIA: CODING UP SAMPLERS 9

5 10 15 20
0

5

10

15

20

25

30

35

mean of μt or μc

fr
eq
ue
nc
y

μt
μc

Figure 15.7: The sampling distribution for 100 samples from the posterior using a Gibbs sampler.

Problem 15.1.16. Gibbs sampling has an acceptance rate of 100%. How can HMC be more
efficient than Gibbs given that its acceptance rate is less than 100%?

The Gibbs sampler moves in steps that are either vertical or horizontal (Figure 15.2). This is an
inefficient way to explore the posterior which has a diagonal orientation. HMC tends to move in the
diagonal with an acceptance rate comparable to that of Gibbs. By taking account of the posterior
geometry it is much more efficient at exploring the typical set.

Problem 15.1.17. You receive new data that results in a change in the posterior to:(
µt
µc

)
∼ N

[(
20
5

)
,

(
2 0.99

0.99 0.5

)]

Using your Random Walk Metropolis sampler calculate R̂ for 8 chains; each generating 100 samples
for each.

With the higher correlation between the parameters the rate of convergence is slower. Intuitively
this is because the model is poorly identified; it is impossible to disentangle one parameter’s effect
from another’s. This causes problems with statistical inference, and hence with the sampling. This
is an example of Gelman’s “Folk Theorem” which states that any problem with MCMC is generally
a problem with the underlying model.

In this case we can still get convergence although it occurs at a much slower rate than before (Figure
15.10), meaning that a sample size of about 500 is required.

Problem 15.1.18. Estimate the value of R̂ for HMC on the posterior from the new data, for a
sample size of 100. How does it compare to Random Walk Metropolis?

10 CHAPTER 15. HAMILTONIAN MONTE CARLO

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

20

40

60

80

error

fr
eq
ue
nc
y

independent

RWM

Gibbs

Figure 15.8: The sampling distribution in estimating the posterior mean of µt for three different
sampling algorithms.

The rate of convergence will be significantly faster for HMC, and so we expect a value of R̂ that is
less than that for Random Walk Metropolis.

15.2 HMC and U-Turns

The code in HMC_UTurn.R uses simulates Hamiltonian dynamics for a single particle on the distri-
bution described in the previous question:

(
µt
µc

)
∼ N

[(
20
5

)
,

(
2 0.8

0.8 0.5

)]

In this question we will see how the efficiency of HMC depends on choice of the number of in-
termediate steps. In particular we investigate the propensity of a particle undergoing Newtonian
dynamics to perform U-Turns.

Problem 15.2.1. Simulate a single particle starting at (20, 5) for L = 10 steps with the following
parameters ε = 0.18 (step size), σ = 0.18 (momentum proposal distribution width). Plot the path
in parameter space.

The particle seems to move without turning round (Figure 15.11).

Problem 15.2.2. Now try L = 20, 50, 100 steps, again plotting the results what do you notice
about the paths?

As the number of steps taken increases the particle becomes more predisposed to U-turns (Figure
15.11).

15.2. HMC AND U-TURNS 11

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

1.2

sample size

m
ea
n
er
ro
r

independent

RWM

Gibbs

HMC

Figure 15.9: The mean error in estimating the posterior mean of µt for four different sampling
algorithms. The dotted lines indicate the effective sample sizes for an actual sample size of 100 for
the Gibbs and Random Walk Metropolis algorithms.

Problem 15.2.3. Simulate 100 iterations of the particle starting at (20, 5), with each particle
running for L = 100 steps. Examine the motion of the particle in one of the parameter dimensions,
and hence determine an optimal number of steps for this distribution.

This can be done with the following R code,

nReplicates <- 100

nStep <- 100

mAll <- matrix(ncol=nReplicates, nrow=nStep)

for(i in 1:nReplicates){

lTest <- HMC_keep(c(20, 5), U, grad_U, 0.18, nStep, 0.18)

lTemp <- lTest$pos[, 1]

aLen <- length(lTemp)

mAll[, i] <- lTemp[1:(aLen - 1)]

}

library(reshape2)

mAll <- melt(mAll)

library(ggplot2)

ggplot(mAll, aes(x=Var1, colour=as.factor(Var2), y=value)) + geom_path() +

theme(legend.position="none") +

ylab('mu_t') + xlab('number of steps')

which should produce a plot qualitatively similar to Figure 15.12. From this we can see that we
explore the most distance in this parameter dimension for about L = 13− 14. Any longer and the
particle turns round on its self.

12 CHAPTER 15. HAMILTONIAN MONTE CARLO

0 200 400 600 800 1000
0

1

2

3

4

iteration #

R

Figure 15.10: The values of R̂ for 16 different replicates, each with 8 chains running in parallel for
the case where ρ = 0.99.

20.00 20.10

5.
00

5.
01

5.
02

5.
03

5.
04

5.
05

L=10

mu_t

m
u_

c

19.90

4.
94

4.
96

4.
98

5.
00

L=20

mu_t

m
u_

c

19.995

4.
99

5
5.

00
0

5.
00

5

L=50

mu_t

m
u_

c

19.4 20.4

4.
7

4.
9

5.
1

5.
3

L=100

mu_t

m
u_

c

Figure 15.11: The path of a particle in parameter space for differing number of steps, L.

15.2. HMC AND U-TURNS 13

19.5

20.0

20.5

0 25 50 75 100
number of steps

m
u_

t

Figure 15.12: The path of 100 particle replicates over in the µt dimension.

14 CHAPTER 15. HAMILTONIAN MONTE CARLO

Bibliography

[1] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2:113–162, 2011.

15

