
Chapter 6

The devil is in the denominator

6.1 Too many coin flips

Suppose we flip two coins. Each coin i is either fair (Pr(H) = θi = 0.5) or biased towards heads
(Pr(H) = θi = 0.9) however, we cannot visibly detect the coin’s nature. Suppose we flip both coins
twice and record each result.

Problem 6.1.1. Suppose that we specify a discrete uniform prior on both θ1 and θ2. Find the
joint distribution of the data and the coins’ identity.

Denote the result of coin 1’s flips by X1 and X2, where Xi = 1 is heads. Similarly for coin 2 except
we use Yi to denote the result on the ith flip. We can then write down the joint distribution as
follows,

Pr(X1, X2, Y1, Y2, θ1, θ2) = Pr(X1, X2|θ1)Pr(Y1, Y2|θ2)Pr(θ1)Pr(θ2) (6.1)

= θX1+X2
1 (1− θ1)2−X1−X2θY1+Y22 (1− θ2)2−Y1−Y20.52 (6.2)

Problem 6.1.2. Show that the above distribution is a valid probability distribution.

It trivially satisfies Pr(.) ≥ 0 and so we only need to show that the sum of all values is 1 by
summing over all the 24 = 16 possible parameter combinations. This can be done by exhaustively
checking every term but the symmetry of the problem means there are probably easier ways to
proceed here.

Problem 6.1.3. We flip each coin twice and obtain for coin 1 {HH} and coin 2 {HT}. Assuming
that the result of each coin flip is independent of the previous result write down a likelihood
function.

Since the coin flips are independent we can write down the overall likelihood by multiplying together
the individual ones,
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Pr({HH}, {HT}|θ1, θ2) = θ21θ2(1− θ2) (6.3)

Problem 6.1.4. What are the maximum likelihood estimators of each parameter?

We can consider each parameter separately due to the independence of the problem. For coin 1,
clearly θ̂1 = 0.9 since this maximises θ21; for coin 2 θ̂2 = 0.5 since this maximises θ2(1− θ2).

Problem 6.1.5. Calculate the marginal likelihood of the data (that is, the denominator of Bayes’
rule).

This can be obtained by marginalising out all θ dependence in the joint distribution,

Pr(HH,HT ) =
∑
θ1

∑
θ2

Pr(HH,HT |θ1, θ2)Pr(θ1)Pr(θ2) (6.4)

=
∑
θ1

Pr(HH|θ1)Pr(θ1)
∑
θ2

Pr(HT |θ2)Pr(θ2) (6.5)

=
1

4
(
1

4
+

81

100
)(

1

4
+

9

10

1

10
) (6.6)

=
901

10000
(6.7)

Problem 6.1.6. Hence calculate the posterior distribution, and demonstrate that this is a valid
probability distribution.

Using Bayes’ rule we have that,

Pr(θ1, θ2|HH,HT ) =
θ21θ2(1− θ2)14

901
10000

(6.8)

=
2500

901
θ21θ2(1− θ2). (6.9)

Summing the above over both θ1 and θ2,

∑
θ1

∑
θ2

2500

2809
θ21θ2(1− θ2) =

2500

901

∑
θ1

θ21
∑
θ2

θ2(1− θ2) (6.10)

=
2500

901

(
0.52 + 0.92

)
(0.5× 0.5 + 0.9× 0.1) (6.11)

= 1. (6.12)

Problem 6.1.7. Find the posterior mean of θ1. What does this signify?
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θ1 θ2 Z Pr(HT,HH, θ1, θ2|Z)

0.5 0.5 0 0.000625
0.5 0.5 1 0.04
0.5 0.9 0 0.002025
0.5 0.9 1 0.0036
0.9 0.5 0 0.018225
0.9 0.5 1 0.0324
0.9 0.9 0 0.059049
0.9 0.9 1 0.002916

Table 6.1: The likelihood function for the dependent coin flip example.

E(θ1|HH,HT ) = E(θ1|HH) (6.13)

=
∑
θ1

θ1
θ21

0.52 + 0.92
(6.14)

=
1

0.52 + 0.92
(0.53 + 0.93) (6.15)

≈ 0.81 (6.16)

This is a bit tricky to interpret since θ1 ∈ {0.5, 0.9}. However it basically means that there is
greater weight towards θ1 = 0.9.

Problem 6.1.8. Now suppose that away from our view a third coin is flipped, and denote Z = 1 for
a heads. The result of this coin affects the bias of the other two coins that are flipped subsequently
so that,

Pr(θi = 0.5|Z) = 0.8Z0.11−Z (6.17)

Suppose we again obtain for coin 1 {HH} and coin 2 {HT}. Find the maximum likelihood es-
timators (θ1, θ2, Z). How do the inferred biases of coin 1 and coin 2 compare to the previous
estimates?

To do this we enumerate over the 8 possible combinations of θ1, θ2 and Z (see Table 6.1). From
this it is evident that the maximum likelihood estimators are (θ̂1, θ̂2, Ẑ) = (0.9, 0.9, 0). So here we
have that coin 2’s ML bias has changed from 0.5 to 0.9. Intuitively this is because there is a strong
penalty for the coin 2 being fair if coin 1 is not, because of the dependence structure.

Problem 6.1.9. Calculate the marginal likelihood for the coin if we suppose that we specify a
discrete uniform prior on Z, i.e. Pr(Z = 1) = 0.5.

To do this we simply multiply all the calculated likelihoods from Table 6.1 by 0.5 and sum them,
to obtain, Pr(HH,HT ) = 0.0794.
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Problem 6.1.10. Suppose we believe that the independent coin flip model (where there is no third
coin) and the dependent coin flip model (where the outcome of the third coin affects the biases of
the two coins) are equally likely a priori. Which of the two models do we prefer?

Basically we want to compare,

Pr(independent M|HH,HT )

Pr(dependent M|HH,HT )
=
Pr(HH,HT |independent M)

Pr(HH,HT |dependent M)
× Pr(independent M)

Pr(dependent M)︸ ︷︷ ︸
1

(6.18)

=
0.0901

0.0794
(6.19)

≈ 1.13 (6.20)

so using this basic test we prefer the independent flips model.

6.2 Coins combined

Suppose that we flip two coins, each of which has Pr(H) = θi where i ∈ {1, 2}, which is unknown. If
their outcome is both the same then we regard this as a success; otherwise a failure. We repeatedly
flip both coins (a single trial) and record whether the outcome is a success or failure. We do not
record the result of flipping each coin. Suppose we model the number of failures, X, we have to
undergo to attain n successes.

Problem 6.2.1. Stating any assumptions that you make specify a suitable probability model here.

The negative binomial fits this description perfectly. However we need to modify it to allow the
probability of success to be a function of both coins’ biases p = θ1θ2 + (1− θ1)(1− θ2). This means
we can write down the pmf,

Pr(X|n, θ1, θ2) =

{(
n+X−1
n−1

)
((1− θ1)(1− θ2) + θ1θ2)

n(1− (1− θ1)(1− θ2)− θ1 − θ2)X X ≥ 0

0 True

(6.21)

This assumes that the flips of each coin are independent.

Problem 6.2.2. We obtain the data in denominator_NBCoins.csv for the number of failures
to wait before 5 successes occur. Suppose that we specify the following priors θ1 ∼ U(0, 1) and
θ2 ∼ U(0, 1). Calculate the denominator of Bayes’ rule. (Hint: use a numerical integration routine.)

This requires us to do the following integral,

∫ 1

0

∫ 1

0
NB(X|n, θ1, θ2)dθ1dθ2 ≈ 2.48731× 10−170. (6.22)
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I carried out the above using Mathematica’s ‘NIntegrate’ function which took around three seconds.

Problem 6.2.3. Draw a contour plot of the posterior. Why does the posterior have this shape?

The posterior is shown in Figure 6.1. There is a thin band of probability mass associated with the
lines θ1θ2 = const or (1− θ1)(1− θ2) = const. The mass is mostly associated in the upper left and
bottom right because the data has relatively long runs before 5 successes occur, meaning that the
same values for the parameters are not likely.
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Figure 6.1: The posterior for the negative binomial coins example.

Problem 6.2.4. Comment on any issues with parameter identification for this model and how
this might be rectified.

Clearly the model cannot differentiate between θ1 and θ2 because we have provided no further
information on these. A solution would be to use a prior that assigns a strong weight to high/low
values of one of the parameters. This isn’t an issue that can be solved by collecting more data,
unless we could see the identities of each coin.
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Problem 6.2.5. Now suppose that we have three coins instead of two. Here we regard a success
as all three coins showing the same result. Using the same data as before attempt to calculate the
denominator term. Why is there a problem?

Even with just three dimensions even sophisticated deterministic routines struggle. After a few
minutes Mathematica gave me this result,

∫ 1

0

∫ 1

0

∫ 1

0
NB(X|5, θ1, θ2, θ3)dθ1dθ2θ3 ≈ 3.64959× 10−169 (6.23)

Clearly with higher dimensions evaluating these integrals is going to be just too hard to attempt!

Problem 6.2.6. Assuming a denominator term equal to 3.64959 × 10−169 estimate the posterior
mean of θ1.

Again we run into problems but now with a different integral,

E(θ1) =

∫ 1

0

∫ 1

0

∫ 1

0
θ1NB(X|5, θ1, θ2, θ3)

1

3.64959× 10−169
dθ1dθ2θ3 ≈ 0.500. (6.24)

The above took around three minutes on Mathematica 11 on my laptop. The moral of the story is
that even if we have the denominator there are still issues with integrating!
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