
Chapter 9

Conjugate priors

9.1 The epidemiology of Lyme disease

Lyme disease is a tick-borne infectious disease spread by bacteria of species Borrelia, which are
transmitted to ticks when they feed on animal hosts. Whilst fairly common in the US, this disease
has recently begun to spread throughout Europe.

Imagine you are researching the occurrence of Lyme disease in the UK. As such, you begin by
collecting samples of 10 ticks from fields and grasslands around Oxford, and counting the occurrence
of the Borrelia bacteria.

Problem 9.1.1. You start by assuming that the occurrence of Borrelia bacteria in one tick is
independent of that in other ticks. In this case, why is it reasonable to assume a binomial likelihood?

If we assume independence in disease between ticks (as well as assuming the underlying prevalence is
the same across all surveyed terrains; i.e. identically-distributed), then because the data is discrete,
and the sample size fixed =⇒ binomial likelihood.

Problem 9.1.2. Suppose the number of Borrelia-positive ticks within each sample i is given by
the random variable Xi, and that the underlying prevalence (amongst ticks) of this disease is θ.
Write down the likelihood for sample i.

The likelihood is given by the binomial probability (through the equivalence principle):

L(θ|Xi) = Pr(Xi|θ)

=

(
10

Xi

)
θXi(1− θ)10−Xi

Problem 9.1.3. Suppose that in your first sample of size 10 you find X1 = 1 case of Borrelia.
Graph the likelihood here and hence (by eye) determine the maximum likelihood estimate of θ.

In R this likelihood can be graphed using the following,
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curve(dbinom(1, 10, x), 0, 1)

The likelihood is shown in Figure 9.1. The maximum likelihood estimate is at θ = 0.1.
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Figure 9.1: The likelihood for X1 = 1 in the ticks example.

Problem 9.1.4. By numerical integration show that the area under the likelihood curve is about
0.09. Comment on this result.

In R this numerical integration can be carried out by the following,

integrate(function(x) dbinom(1, 10, x), 0, 1)

This is approximately 1
11 ≈ 0.09. Therefore not a valid probability distribution!

Problem 9.1.5. Assuming that θ = 10%, graph the probability distribution (also known as the
sampling distribution). Show that, in contrast to the likelihood, this distribution is a valid proba-
bility distribution.

This distribution can be graphed in R using,

lX <- seq(0, 10, 1)

plot(lX,sapply(lX, function(x) dbinom(x, 10, 0.1)),

xlab="number of cases of bacteria out of 10", ylab="probability")

This is a discrete probability distribution shown in Figure 9.2. Since it is a discrete probability
distribution we can check its validity by summing over all the probability masses,
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lX <- seq(0, 10, 1)

sum(sapply(lX, function(x) dbinom(x, 10, 0.1))) == 1
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Figure 9.2: The sampling distribution for θ = 0.1.

Problem 9.1.6. (Optional) Now assume that you do not know θ. Use calculus to show that the
maximum likelihood estimator of the parameter, for a single sample of size 10 where we found X
ticks with the disease is given by:

θ̂ =
X

10
(9.1)

(Hint: maximise the log-likelihood rather than the likelihood.)

We can write down the likelihood,

L(θ|X) =

(
10

X

)
θX(1− θ)10−X

Since the log is a monotonic transformation we can take the log of the likelihood, and maximise
this instead. Taking the log we obtain,

l = log L(θ|X) = constants +Xlog(θ) + (10−X)log(1− θ)

which we then differentiate to find the maximum,
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∂l

∂θ
=
X

θ̂
− 10−X

1− θ̂
= 0 (9.2)

which is obtained when θ̂ = X
10 .

Problem 9.1.7. A colleague mentions that a reasonable prior to use for θ is a beta(a, b) distribu-
tion. Graph this for a = 1 and b = 1.

This is a continuous uniform distribution across (0,1), which can be obtained from the following R
code,

curve(dbeta(x, 1, 1), 0, 1, xlab="theta", ylab="probability")

Problem 9.1.8. How does this distribution change as you vary a and b?

The mean is a
a+b . This can be obtained from R by doing,

?dbeta

and looking at the resultant help file. Therefore as a ↑ the mass of the distribution shifts to the
right.

Problem 9.1.9. Prove that a beta(a, b) prior is conjugate to the binomial likelihood, showing that
the posterior distribution is given by a beta(X + a, 10−X + b) distribution.

� Likelihood:
X ∼ B(10, θ) =⇒ p(X|θ) ∝ θX(1− θ)10−X (9.3)

� For the prior assume a beta distribution (a reasonable choice if θ ∈ (0, 1)):

θ ∼ beta(a, b) =⇒ p(θ) ∝ θa−1(1− θ)b−1 (9.4)

� Posterior:

p(θ|X) ∝ p(X|θ)× p(θ)
∝ θX(1− θ)10−X × θa−1(1− θ)b−1

= θX+a−1(1− θ)10−X+b−1

This has same θ-dependence as a beta(X + a, 10−X + b) density =⇒ must be this distribution!

Problem 9.1.10. Graph the posterior for a = 1 and b = 1. How does the posterior distribution
vary as you change the mean of the beta prior? (In both cases assume that X = 1.)

For a = 1 and b = 1 =⇒ mean is 1+1
10−1+1 = 1

5 .
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Problem 9.1.11. You now collect a larger dataset (encompassing the previous one) that has a
sample size of 100 ticks in total; of which you find 7 carry Borrelia. Find and graph the new
posterior using the conjugate prior rules for a beta(1, 1) prior and binomial likelihood.

For a = 1 and b = 1 =⇒ beta(1 + 7, 100 − 7 + 1) posterior, whose mean is 1+7
100+2 = 8

102 ≈ 0.078.
The posterior is shown in Figure 9.3, of which a similar curve can be obtained in R by doing the
following,

curve(dbeta(x, 1 + 7, 100 - 7 + 1), 0, 1, xlab="theta", ylab="probability")
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Figure 9.3: The posterior distribution for X = 7 out of a sample of 100 ticks.

Problem 9.1.12. You collect a second dataset of 100 ticks; this time finding that 4 carry the
disease. Find and graph the new posterior (across both datasets) using the conjugate prior rules
for a beta(1, 1) prior and binomial likelihood. How does it compare to the previous one?

The new likelihood is the product of the two samples’ likelihoods, and so we find a beta(1 +
11, 200−11+1) posterior. This results in a narrower posterior (see Figure 9.4), which can similarly
be produced in R using,

curve(dbeta(x, 1 + 11, 200 - 11 + 1), 0, 1, xlab="theta", ylab="probability")

Problem 9.1.13. Now we will use sampling to estimate the posterior predictive distribution for
a sample size of 100, using the posterior distribution obtained from the entire sample of 200 ticks
(11 of which were disease-positive). To do this we will first sample a random value of θ from the
posterior: so θi ∼ p(θ|X). We then sample a random value of the data X by sampling from the
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Figure 9.4: The posterior distribution for X1 = 7 and X2 = 4; each out of a sample of 100 ticks.

binomial sampling distribution Xi ∼ B(100, θi). We repeat this process a large number of times to
obtain samples from this distribution. Follow the previous rules to produce 10,000 samples from
the posterior predictive distribution, which we then graph using a histogram.

The posterior predictive distribution for a sample of 100 ticks is shown in Figure 9.5. I find the
best way to do this is to create a function in R that does the above iteration,

fPosteriorPredictive <- function(aNumSamples){

lX <- vector(length=aNumSamples)

for(i in 1:aNumSamples){

theta <- rbeta(1, 1 + 11, 200 - 11 + 1)

X <- rbinom(1, 100, theta)

lX[i] <- X

}

return(lX)

}

which we can then use to generate 10,000 posterior samples, then graph these using,

X <- fPosteriorPredictive(10000)

hist(X, breaks=seq(0, 100, 1), xlim = c(0, 20),

xlab="number of disease-positive ticks")

Problem 9.1.14. Does our model fit the data?

Both the original data points are well contained within the posterior predictive distribution. Thus
the model looks like a reasonable fit.
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Figure 9.5: Samples from the posterior distribution predictive distribution for X1 = 7 and X2 = 4;
for a sample size of 100 ticks.

Problem 9.1.15. Indicate whether you expect this model to hold across future sampling efforts.

Whilst it is a bit imprudent to comment on this, I would argue in this case that the assumption
of independence of Borrelia amongst ticks is a bit suspect. In particular, the presence of one
disease-positive tick makes it more likely that another - nearby - tick will catch the disease whilst
blood-feeding. A more robust model might be preferable, for example the beta-binomial.

Problem 9.1.16. If we assume a uniform prior on θ, the probability that a randomly sampled
tick carries Lyme disease, what is the shape of the prior for θ2? (This is the probability that 2/2
ticks carry Lyme disease.)

Hint: do this either using Jacobians (hard-ish), or by sampling (easy-ish).

Assume a change of variables y = g(x), how does the density change? We need the Jacobian of the
transformation:

fY (y) = fX(g−1(y))g′−1(y) (9.5)

= fX(g−1(y))|dx
dy
| (9.6)

In this case, φ = θ2:
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fΦ(φ) = fθ(
√
φ)

1

2
φ−

1
2 (9.7)

= 1× 1

2
φ−

1
2 (9.8)

=
1

2
φ−

1
2 (9.9)

Alternatively do this by sampling from a uniform prior for θ in R, then squaring each result,

fThetaSquared <- function(aNumSamples){

lThetaSquared <- vector(length=aNumSamples)

for(i in 1:aNumSamples){

theta <- rbeta(1, 1, 1)

lThetaSquared[i] <- theta ^ 2

}

return(lThetaSquared)

}

# Draw samples and graph result

theta <- fThetaSquared(100000)

hist(theta, 100, xlab="theta-squared")

9.2 Epilepsy

In the data file conjugate_epil.csv there is a count of seizures for 112 patients with epilepsy who
took part in a study [2]. Assume a) the underlying rate of seizures is the same across all patients,
and b) the event of a seizure occurring is independent of any other seizures occurring.

Problem 9.2.1. Under these assumptions what model might be appropriate for this data?

A Poisson distribution.

Problem 9.2.2. Write down the likelihood for the data.

The likelihood for a single observation x is given by:

L(θ|x) =
θxe−θ

x!
(9.10)

For a data vector x = (x1, x2, ..., xn) if we assume independence between our observations we have:

L(θ|x) =

n∏
i=1

θxie−θ

xi!
(9.11)
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Problem 9.2.3. Show that a gamma prior is conjugate to this likelihood.

The gamma distribution has the functional form:

p(θ) ∝ θα−1e−βθ (9.12)

The posterior then has the functional form:

p(θ|x) ∝ θα−1e−βθ ×
n∏
i=1

θxie−θ

xi!

∝ θ
α−1+

n∑
i=1

xi
× e−(β+n)θ

Which is the same θ dependence as a Γ(α+
n∑
i=1

xi, β+n) distribution =⇒ this must be the posterior

distribution! Therefore the posterior is a gamma distribution as well as the prior ∴ conjugate.

Problem 9.2.4. Assuming a Γ(4, 0.25) (with a parameterisation such that it has mean of 16)
prior. Find the posterior distribution, and graph it.

See above problem for derivation of the posterior density. The graph of the posterior should look
like Figure 9.6.
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Figure 9.6: The posterior for the epilepsy example.
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Problem 9.2.5. Find or look-up the posterior predictive distribution, and graph it.

The posterior predictive distribution is a negative binomial - this can be derived by:

p(x̃|x) =

∫
p(x̃|θ,x)× p(θ|x)dθ

=

∫
p(x̃|θ)× p(θ|x)dθ

...

where ... can be found via Googling. The posterior predictive distribution turns out to beNB(
n∑
i=1

xi+

α, β + n), where (α, β) are the parameters of the gamma prior distribution. The graph is shown in
Figure 9.7.
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Figure 9.7: Posterior predictive distribution for seizure data.

Problem 9.2.6. Comment on the suitability of the model to the data.

In Figure 9.8 we see that the real data is much more dispersed than the simulated. This is likely for
a number of reasons: for example, the event of a seizure is not likely independent of others (they
come in clusters); also the rate of seizures varies between subjects (in other words the data are not
exchangeable). Amongst other reasons these suggest that a Poisson model is not well suited here,
and we would be better off using a more robust distribution for the likelihood, for example the
negative binomial.



9.3. LIGHT SPEED 11

actual

sim

0 20 40 60 80
0

10

20

30

40

50

60

number of seizures

fr
eq
ue
nc
y

Figure 9.8: Comparing actual vs simulated seizures.

9.3 Light speed

The data file conjugate_newcomb.csv provides Simon Newcombs (1882) measurements of the
passage time (in millionths of a second) it took light to travel from his lab to a mirror on the
Washington Monument, and back again. The distance of the path travelled is about 7.4km. The
primary goal of this experiment is to determine the speed of light, and to quantify the uncertainty of
the measurement. We assume there are a multitude of factors that additively result in measurement
error for the passage time.

Problem 9.3.1. Why might a normal distribution be appropriate here?

There are a range of factors that influence the measurement of the passage time. If these factors
are roughly independent, and they affect the measurement additively, then the (Lindberg-Lévy)
central limit theorem applies.

Problem 9.3.2. Write down the likelihood for all the data.

The likelihood of a single data point x is given by:

p(x|µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(9.13)

If we assume measurements are independent, and identically-distributed then we just need to
multiply together the individual likelihoods:
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L(µ, σ|x) =
n∏
i=1

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
(9.14)

Problem 9.3.3. Derive the maximum likelihood estimators of all parameters.

It’s easiest to first take the log:

l(µ, σ|x) = −n
2
log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2 (9.15)

Then maximising this function over (µ, σ2), we find that:

µ̂ = x̄

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2

Problem 9.3.4. Based on the likelihood function what functional form for the prior p(µ, σ2) would
make it conjugate?

We want a prior that when multiplied by a normal gives a distribution of the same family. There
are a few choices here, but the only one that is a valid probability distribution is a normal-inverse-
gamma or normal-inverse-chi-squared (they are both the same thing).

Problem 9.3.5. Assuming a decomposition of the prior p(µ, σ2) = p(σ2) × p(µ|σ2), what priors
might we use?

Again a normal inverse gamma. You could use an improper p(σ2) ∝ 1
σ2 but it’s better to use

fully-valid probability distributions.

Problem 9.3.6. (Difficult) Using these priors, find the parameters of the posterior distribution.

Look it up in Gelman [1].

Problem 9.3.7. Comment on the suitability of the model to the data. (You can use the ML
estimates here, or if you’re feeling ambitious, the full posterior predictive distribution.)

Using the posterior predictive simulate data and compare with the actual we see that the normal
distribution is not sufficiently robust. We would be better using a Student t distribution.
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