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[bookmark: _GoBack]SPSS syntax and output for Chapter 11: Growth Curve Modeling
Estimating growth curve models in the SEM framework is not possible with SPSS. But the SPSS MIXED command can be used to implement the MLM approach to growth curve modeling.
Much of the material in this document builds on the SPSS syntax and output from earlier chapters, particularly Chapter 6. If necessary, refer back to those documents for reminders.

Begin by importing the space-delimited ‘alcuse.txt’ file for the adolescent alcohol use example. There is a large amount of missing values which are all coded as ‘NA’ in the .txt file. To get SPSS to recode these NAs as ‘system-missing’ values, it is important to enter the variable format for the alcohol use variables as F7.5 rather than AUTO: 
GET DATA  /TYPE=TXT
  /FILE="alcuse.txt"
  /DELIMITERS=" "
  /ARRANGEMENT=DELIMITED
  /FIRSTCASE=1
  /VARIABLES=
  id AUTO
  gender AUTO
  coa AUTO
  alc_11 F7.5
  alc_12 F7.5
  alc_13 F7.5
  alc_14 F7.5
  alc_15 F7.5
  /MAP.
Keep in mind that this data file is in the wide format described in Chapter 11.

Again, one should inspect descriptive stats and some graphs before fitting models.
DESCRIPTIVES VARIABLES=alc_11 alc_12 alc_13 alc_14 alc_15
  /STATISTICS=MEAN STDDEV VARIANCE RANGE MIN MAX KURTOSIS SKEWNESS.

	Descriptive Statistics

	
	N
	Range
	Minimum
	Maximum
	Mean
	Std. Deviation
	Variance
	Skewness
	Kurtosis

	
	Statistic
	Statistic
	Statistic
	Statistic
	Statistic
	Statistic
	Statistic
	Statistic
	Statistic

	alc_11
	70
	.96875
	.00000
	.96875
	.0419643
	.14914894
	.022
	4.502
	23.147

	alc_12
	150
	2.87500
	.00000
	2.87500
	.1108333
	.35267336
	.124
	4.900
	29.909

	alc_13
	246
	2.65625
	.00000
	2.65625
	.1882622
	.44092977
	.194
	3.201
	11.500

	alc_14
	271
	6.00000
	.00000
	6.00000
	.4376153
	.84925544
	.721
	3.270
	13.037

	alc_15
	185
	5.50000
	.00000
	5.50000
	.8189189
	1.18064246
	1.394
	1.903
	3.393


Notice that the N varies substantially due to missing data patterns.

GCMs for linear change using MLM
Before growth curve models can be estimated in the MLM framework, first the alcohol use dataset needs to be re-arranged from the wide formate into a long format. The VARSTOCASES command can accomplish this task:

VARSTOCASES
  /MAKE alcuse FROM alc_11 alc_12 alc_13 alc_14 alc_15
  /INDEX = age.
LIST id gender coa age alcuse.
Now, the data looks a lot like the format presented in Table 11.3. However, the 'age' variable was automatically distorted (i.e., age_11 became age = 1, age_12 became age = 2, etc.). For the purpose of fitting the linear GCMs of alcohol use from age 13 to age 15, it is necessary to re-code this 'age' variable into a 'time' variable centered at age 13:
COMPUTE time=age - 3.
EXECUTE.
Now the data are ready for growth curve models to be fit to them using MLM.
Unconditional linear GCM
Recall that the linear GCMs were fitted just to the data from age 13 to age 15. To do so, first create a filter that selects only these observations:
COMPUTE filter_$=(time  >= 0).
VARIABLE LABELS filter_$ 'time  >= 0 (FILTER)'.
FILTER BY filter_$.
EXECUTE.
As in Chapter 6 which described fitting MLMs to cross-sectional, hierarchical data, the MIXED command can also be used to fit GCMs to longitudinal data using MLM.
The code below uses MIXED to specify and estimate the unconditional linear growth model, featuring both random intercepts and slopes for the effect of 'time' that vary across individuals.
This command is very similar to that used in Chapter 6 for the random slopes model, except here the /REPEATED subcommand is also included to allow the Level 1 (time-specific, within-person) residual variances to differ across time, so that this MLM is equivalent to the SEM specification of the unconditional linear GCM given earlier. Specifically, the COVTYPE is specified as DIAG so that the within-person, Level 1 residual covariance matrix is diagonal. Finally, asking for covariance matrices G and R to be printed gives the Level 1 (R) and Level 2 (G) covariance matrices: 
MIXED alcuse WITH time
  /PRINT SOLUTION TESTCOV G R
  /FIXED = time | SSTYPE(3) 
  /RANDOM = INTERCEPT time | SUBJECT(id)
  /REPEATED = time | SUBJECT(id) COVTYPE(DIAG).
Output:
	Estimates of Fixed Effectsa

	Parameter
	Estimate
	Std. Error
	df
	t
	Sig.
	95% Confidence Interval

	
	
	
	
	
	
	Lower Bound
	Upper Bound

	Intercept
	.201650
	.027838
	256.642
	7.244
	.000
	.146830
	.256471

	time
	.271380
	.035581
	220.986
	7.627
	.000
	.201257
	.341502

	a. Dependent Variable: alcuse.



	Estimates of Covariance Parametersa

	Parameter
	Estimate
	Std. Error
	Wald Z
	Sig.
	95% Confidence Interval

	
	
	
	
	
	Lower Bound
	Upper Bound

	Repeated Measures
	Var: [time=.00]
	.006795
	.049975
	.136
	.892
	3.732385E-9
	12371.156450

	
	Var: [time=1.00]
	.297411
	.043693
	6.807
	.000
	.223000
	.396650

	
	Var: [time=2.00]
	.434578
	.120017
	3.621
	.000
	.252925
	.746695

	Intercept + time [subject = id]
	UN (1,1)
	.205734
	.053849
	3.821
	.000
	.123172
	.343636

	
	UN (2,1)
	.021767
	.041034
	.530
	.596
	-.058658
	.102192

	
	UN (2,2)
	.176195
	.046021
	3.829
	.000
	.105600
	.293983

	a. Dependent Variable: alcuse.



	Random Effect Covariance Structure (G)a

	
	Intercept | id
	time | id

	Intercept | id
	.205734
	.021767

	time | id
	.021767
	.176195

	Unstructured

	a. Dependent Variable: alcuse.



	Residual Covariance (R) Matrixa

	
	[time = .00]
	[time = 1.00]
	[time = 2.00]

	[time = .00]
	.006795
	0
	0

	[time = 1.00]
	0
	.297411
	0

	[time = 2.00]
	0
	0
	.434578

	Diagonal

	a. Dependent Variable: alcuse.


The output above corresponds closely to the results reported in Table 11.4, which were obtained using SEM. In particular, the fixed intercept estimate and the fixed 'time' estimate match the means of the latent intercept and slope factors. The standard errors of these fixed-effect estimates from MLM are similar to the standard errors of the latent growth factor means, but are not quite identical because robust standard errors were obtained in the SEM framework.
Furthermore, the intercept and 'time' random-effect variance estimates (from the ‘Random Effect Covariance Structure (G)’ output) match the estimates of the variance of the latent intercept and slope factors. In the ‘Residual Covariance (R) Matrix’ output we see that the Level 1 residual variance was allowed to differ across time (but the residual covariance were all = 0), consistent with the SEM model specification.
Conditional linear growth model
It is straghtforward to extend the unconditional linear growth model to include the gender and COA effects. But, as explained in the chapter, regressing the random slopes on these predictors implies a cross-level interaction between the predictors and 'time'. Therefore, product variables must first be created to represent these interactions:
COMPUTE timecoa=time*coa.
COMPUTE timegen=time*gender.
EXECUTE.
Then these product variables may be used in the MIXED command:
MIXED alcuse WITH time coa gender timecoa timegen
  /PRINT SOLUTION TESTCOV R
  /FIXED = time coa gender timecoa timegen | SSTYPE(3) 
  /RANDOM = INTERCEPT time | SUBJECT(id)
  /REPEATED = time | SUBJECT(id) COVTYPE(DIAG).
Output:
	Estimates of Fixed Effectsa

	Parameter
	Estimate
	Std. Error
	df
	t
	Sig.
	95% Confidence Interval

	
	
	
	
	
	
	Lower Bound
	Upper Bound

	Intercept
	.216978
	.094366
	257.142
	2.299
	.022
	.031150
	.402806

	time
	.056851
	.116096
	224.484
	.490
	.625
	-.171927
	.285628

	coa
	.205927
	.054793
	256.054
	3.758
	.000
	.098024
	.313829

	gender
	-.083110
	.054700
	255.867
	-1.519
	.130
	-.190831
	.024610

	timecoa
	.299163
	.069454
	230.507
	4.307
	.000
	.162316
	.436009

	timegen
	.035988
	.069126
	228.515
	.521
	.603
	-.100217
	.172193

	a. Dependent Variable: alcuse.



	Estimates of Covariance Parametersa

	Parameter
	Estimate
	Std. Error
	Wald Z
	Sig.
	95% Confidence Interval

	
	
	
	
	
	Lower Bound
	Upper Bound

	Repeated Measures
	Var: [time=.00]
	.002928
	.022626
	.129
	.897
	7.751907E-10
	11060.642290

	
	Var: [time=1.00]
	.299440
	.039698
	7.543
	.000
	.230921
	.388291

	
	Var: [time=2.00]
	.410385
	.105032
	3.907
	.000
	.248507
	.677711

	Intercept [subject = id]
	Variance
	.197939
	.030329
	6.527
	.000
	.146592
	.267273

	time [subject = id]
	Variance
	.165093
	.032807
	5.032
	.000
	.111835
	.243714

	a. Dependent Variable: alcuse.



	Residual Covariance (R) Matrixa

	
	[time = .00]
	[time = 1.00]
	[time = 2.00]

	[time = .00]
	.002928
	0
	0

	[time = 1.00]
	0
	.299440
	0

	[time = 2.00]
	0
	0
	.410385

	Diagonal

	a. Dependent Variable: alcuse.


The estimates above match those in Table 11.7 (but again, the standard error values are slightly different). Note that the 'timegen' and 'timecoa' interaction estimates correspond to the coefficients for the effect of gender on the random slopes and the effect of COA on the random slopes, respectively.

GCMs for non-linear change using MLM
Again, the models for non-linear change are based on alcohol use from age 11 to age 15, so turn off the filter to select all cases. Based on already having run the corresponding code above, the 'time' variable is already centered at age 13.
Unconditional quadratic GCM
The quadratic GCM is easily specified by expanding the linear GCM to include the squared effect of time; first, it is necessary to compute a new variable to represent time squared:
COMPUTE timesq=time**2.
EXECUTE.
Then, the MIXED command is expanded to include this new variable:
MIXED alcuse WITH time timesq
  /PRINT SOLUTION TESTCOV G R
  /FIXED = time timesq | SSTYPE(3) 
  /RANDOM = INTERCEPT time timesq | SUBJECT(id)
  /REPEATED = time | SUBJECT(id) COVTYPE(DIAG).
However, running the syntax above using the default estimation settings leads to non-convergence. We can try increasing the number of iterations using /CRITERIA MXITER(1000):
MIXED alcuse WITH time timesq 
  /CRITERIA  MXITER(1000)
  /PRINT SOLUTION TESTCOV G R
  /FIXED = time timesq | SSTYPE(3) 
  /RANDOM = INTERCEPT time timesq | SUBJECT(id)
  /REPEATED = time | SUBJECT(id) COVTYPE(DIAG).
But the model still doesn’t converge. One could increase the maximum number of iterations further, but doing so quickly becomes an exercise in futility (note that converged results were achieved using R).

Unconditional pieceise linear GCM
To specify a piecewise linear GCM using MLM, first it is necessary to create two time variables, one corresponding to the first linear trajectory segment (called 't1' below) and the other corresponding to the second linear trajectory segment (called 't2' below). The commands below recode 'age' (which, recall, goes from 1 to 5 in the current data frame rather than 11 to 15) to create 't1', which covers ages 11 to 13, and 't2', which covers ages 13 to 15, consistent with the factor loading specifications depicted in Figure 11.8:
RECODE age (1=-2) (2=-1) (3 thru 5=0) INTO t1.
RECODE age (4=1) (5=2) (1 thru 3=0) INTO t2.
EXECUTE.
Now the piecewise model is specified and estimated by regressing the alcohol outcome on 't1' and 't2' simultaneously (and again allowing the two slopes to vary randomly across participants):
MIXED alcuse WITH t1 t2 
  /PRINT SOLUTION TESTCOV G R
  /FIXED = t1 t2 | SSTYPE(3) 
  /RANDOM = INTERCEPT t1 t2 | SUBJECT(id)
  /REPEATED = time | SUBJECT(id) COVTYPE(DIAG).
Once again, however, converged results are not obtained. Convergence was obtained using R, though, which demonstrates the value of being able to use more than one software package.
