Chapter 9: Hypothesis Tests: Introduction, Basic Concepts, and an Example

Example 2
1 - pbinom($6,15,1 / 3$)
1 - pbinom($8,15,1 / 3$)

Example 4
pbinom($8,15,0.70)$
pbinom(6, 15, 0.70)

Example 5
1 - pbinom($8,15,1 / 3$)

End-of-Chapter 9 Exercises

Exercise 1
1 - pbinom($7,14,1 / 3$)
sum(dbinom(8:14, 14, 1/3))

Exercise 2
pbinom(7, 14, 0.80)
$\operatorname{sum}(\operatorname{dbinom}(0: 7,14,0.80))$

Exercise 3

1 - pbinom($9,14,1 / 3$)
sum(dbinom(10:14, 14, 1/3))

Exercise 4
pbinom($9,14,0.80$)
sum(dbinom(0 : 9, 14, 0.80))

R Functions

. 1 - pbinom($6,15,1 / 3$) Provides the binomial probability of $x=7$ or more successes in $n=15$ trials with the probability of success on each trial equal to $p=1 / 3$.
. $1-\operatorname{pbinom}(8,15,1 / 3)$ Provides the binomial probability of $x=9$ or more successes in $n=15$ trials with the probability of success on each trial equal to $p=1 / 3$.
. $\operatorname{pbinom}(8,15,0.70)$ Provides the binomial probability of $x=8$ or fewer successes in $n=15$ trials with the probability of success on each trial equal to $\mathrm{p}=0.70$.
. pbinom $(6,15,0.70)$ Provides the binomial probability of $x=6$ or fewer successes in $n=15$ trials with the probability of success on each trial equal to $\mathrm{p}=0.70$.

