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INTRODUCTION

Anytime someone thinks a question is important enough to invest time and money in 
answering it, it’s a safe bet that others think the same thing. The clearest example of this 
point is seen in political polling. As an election approaches, we are bombarded with polls 
that report the candidate preferences of voters. Even if polls are conducted properly, the 
estimates will vary from sample to sample because of sampling error. How do we make 
sense of these variable estimates of the same parameter? In this chapter, we’ll see that 
many individual estimates can be averaged to produce a more precise or accurate estimate 
of the population parameter.

Although political polling may be the first example that comes to mind, it is not the 
only situation in which we might wish to average point estimates from different sources. 
For example, many studies may have estimated (i) the proportion of adults that exhibit psy-
chiatric symptoms, (ii) the average level of depression of Scandinavians, (iii) the average 
number of years required to complete a graduate degree in psychology, or (iv) the average 
area of the primary visual cortex in humans. Meta-analysis is the name given to a family of 
methods that average information from several  different sources.

In previous chapters, we considered the estimation of a single parameter from a single 
sample. In most cases, the procedure required calculating a point estimate of the param-
eter (i.e., a statistic) and its estimated standard error. We computed (1–α)100% confidence 
intervals by putting together the point estimate and estimated standard error with the level 
of confidence we wished to have. In this chapter, we will see that combining results from 
two or more studies is very much like combining the results of two or more scores. Rather 
than treating the scores of individuals as the data to be analyzed, meta-analysis treats the 
statistics of samples (e.g., means or effect sizes) as the data to be analyzed.

BASICS OF META-ANALYSIS

Primary and Secondary Literature

Research journals publish two kinds of papers. Most papers report original research. The 
term “original” means that new data have been collected and reported in the paper. The 
data may have been collected to address a question that has been of interest to others or 
a novel question that has not been previously studied. The focus here is not on whether 
papers address an original question but rather whether the papers contain original data. 
Papers reporting original data are considered part of the primary literature.

Papers that review the primary literature in one way or another make up the secondary 
literature. Meta-analysis is a quantitative method within the secondary literature that 
combines results from the primary literature to provide an answer to a question of interest 
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that is a more precise, or accurate, than the answers pro-
vided by individual papers.

An Example Combining Means

We will begin with an example to illustrate the basic 
features of meta-analysis, using the following question: 
“At what age do children first count to 10?” One could 
pose this question to a random sample of parents and use 
their responses to estimate the population parameter. Of 
course, retrospective self-report measures of this sort are 
prone to error (e.g., memory) and bias (e.g., parents wish-
ing to have their child seem special). Despite such meth-
odological difficulties, it’s easy to see that this might 
be a developmental marker of interest to psychologists. 
Therefore, to illustrate meta-analysis, we will imagine 
that the primary literature contains many studies that 
have estimated the mean age at which children in their 
samples first count to 10.

Later in this chapter, we will address important 
issues of how studies are identified and selected for anal-
ysis from the primary literature. First, however, we will 
discuss a simple statistical conceptualization underly-
ing meta-analysis. This conceptualization (or statistical 
model) will seem familiar because it is the same model 
used in previous chapters. This simplified approach to 
meta-analysis assumes that the children in each of the 
studies selected for analysis are simply different random 

samples from the same population. If several samples have been drawn from the same 
population, then the means of these samples can be averaged, and a confidence interval 
can be placed around the mean of means. A mean of means will be a more precise estimate 
of the mean of the population being sampled; therefore, the confidence interval around a 
mean of means will be narrower, on average, than the confidence intervals placed around 
individual sample means.

Figure 22.1 illustrates the ideas described above. Each white dot represents a sample 
mean, and the intervals around the sample means are 95% confidence intervals. The blue 
dot is the mean of the eight sample means. We refer to the mean of means as a meta-mean 
and denote it with a capital M. The arms around M represent the 95% confidence interval. 
The confidence interval around M shows that it is a more precise estimator than any of the 
individual sample means. Furthermore, meta-means will fall closer to the population mean 
μ, on average, than will sample means. We next turn to the computation of M and the con-
fidence interval around it.

Computing a Confidence Interval Around M

Table 22.1 shows the results of the eight hypothetical studies depicted in Figure 22.1. Each 
study estimates the mean age (in months) at which children first count to 10, and each is 
given an arbitrary number from 1 to 8, shown in the first column. The second column 
shows the mean obtained in each study. Finally, columns 3 and 4 show sample variances 
and sample sizes, respectively.

40 44 48 52 56

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Meta-analysis

Age (months)

FIGURE 22.1 ■ An Example of Meta-Analysis

The means of eight studies are shown along with their 95% 
confidence intervals. The blue dot shows the mean of the eight 
study means; i.e., the meta-mean, M = Σm/k. The confidence 
interval around the meta-mean is M ± tα/2(sM ). A meta-mean 
will fall closer to the population mean, on average, than the 
means of individual studies. In addition, the confidence 
interval around a meta-mean will be narrower, on average, than 
confidence intervals around the means of individual studies.

The meta-mean (M) is 
a statistic that is the 
mean of a number of 
sample means.
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We can compute a confidence interval around M 
using exactly the same calculations we used to place a 
confidence interval around m. The only difference is that 
means are the units of analysis in the case of meta-analysis,  
whereas scores were the units of analysis in previous 
chapters.

The calculation of a meta-mean (M) is identical to the 
calculation of a sample mean:

M m kii
k= ∑ = /1

. (22.1)

This equation defines a mean exactly as in Chapter 2. 
However, a few frills have been added here. We saw sum-
mation signs like these in Chapters 18 and 19, but we will 
take a moment to review them here. The k at the top of the 
summation sign is the number of means being averaged. 
The letter i is called an index, and it takes on integer values 
from 1 to k. The values of i provide a way to refer to each of 
the k sample means (m1, m2,…, mk ) being averaged. (The 
motivation for using indexes will become clearer as we 
move along.) For the data in Table 22.1, k = 8; however, in 
other cases, k could be any  number greater than 1. You can 
read equation 22.1 as follows: Sum the k sample means m1, m2,…, mk and divide this sum by k 
to create a mean of sample means. Call this mean of means M.

The capital letter M emphasizes that the mean in question is a mean of means. M esti-
mates μ, the mean of the population of scores. 

Just as we can compute the variance for a collection of scores, we can compute the vari-
ance for a collection of means:

S
m M
k
ii

k
2

2
1

1
=

−∑
−

= ( )
. (22.2)

This variance is computed in the same way as the variance of a sample. The only difference 
is that the squared differences are computed from (mi - M), rather than (yi - m). Note that 
the S has been capitalized in S2 to emphasize that it was computed from means rather than 
scores.

The mean of means (M) is a statistic, which means that it is different for each sample 
of k means, just as m is different for each sample of n scores. Therefore, as a statistic, 
M has a sampling distribution with a mean and a variance. The mean of the sampling 
distribution of M is μ, the population mean. The variance of the distribution of M is sM

2 , 
which is estimated as follows:

sM
2  = S 2/k. (22.3)

So, just as s s nm
2 2= /  estimates the variance of the distribution of m (sm

2 ), sM
2  estimates the 

variance of the distribution of M (sM
2 ). If we take the square root of sM

2 , we obtain the esti-
mated standard error of M:

s sM M= 2
. (22.4)

TABLE 22.1 ■ Hypothetical Data

i mi s2
i ni

1 45 98 20

2 50 70 60

3 48 70 30

4 48 63 40

5 49 84 20

6 47 112 10

7 46 56 10

8 43 21 10

M

47 8.47
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Once we have the estimated standard error of M, we can compute the confidence interval as

M ± ta/2(sM ). (22.5)

In this case, we have k-1 = 7 degrees of freedom. Our confidence in this interval comes 
from knowing that (1-α)100% of all such intervals will capture μ.

An Example Calculation

Let’s now step through the calculation of M ± tα/2(sM ) for the data in Table 22.1. When we 
apply equation 22.1 to these means we obtain

M m kii
k= ∑ == / .1 47

You should be able to confirm this using a calculator or 
Excel. Next, we compute the variance of the sample means 
using equation 22.2. To do this, we first compute the sum 
of squared deviations about M as shown in Table 22.2, and 
we find in this case that ss = 36. To compute the variance, 
we simply divide the sum of squares by k-1, where k is the 
number of sample means. The calculation is as follows:

S
m M
k
ii

k
2

2
1

1

36

7
=

−∑
−

=== ( )
5.1429.

Now that the routine variance calculations are com-
pleted, we need only compute the estimated standard 
error of M. First we compute the square of the estimated 
standard error of M according to equation 22.3:

sM
2  = S2/k = 5.1429/8 = 0.6429.

We then compute the estimated standard error itself 
according to equation 22.4:

     s sM M= = =2 0 6429 0 8018. . .

The last step is to compute a confidence interval around M. As is customary, we will com-
pute the 95% confidence interval, using equation 22.5. There are k-1 = 7 df; so from the 
t-table, we find that tα/2 = 2.365. Therefore, the 95% confidence interval is

CI = M ± ta/2(SM) = 47 ± 2.365(0.8018) = [45.10, 48.90].

The confidence limits have been rounded to two decimal places.
So that’s all there is to this simple form of meta-analysis. We’ve used exactly the same 

calculations that were used for confidence intervals around sample means. The only change 
is that means have replaced scores in our calculations. As a consequence, some of the 
parameters estimated change, even though the structure and logic of the calculations are the 
same. Table 22.3 summarizes the parallels between confidence intervals for sample means 
and confidence intervals in a meta-analysis.

Although we ignored the sample sizes and sample variances in the example above, 
there is an alternative method that makes use of these quantities when computing sM. How-
ever, this method involves assumptions that are almost never true in practice. The method 

TABLE 22.2 ■ Computing the Sum of Squares

i mi mi - M (mi - M)2

1 45 –2 4

2 50 3 9

3 48 1 1

4 48 1 1

5 49 2 4

6 47 0 0

7 46 -1 1

8 43 -4 16

Sum 376 0 36

Mean 47
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discussed above does not involve these implausible assumptions and is therefore more gen-
eral. There is a brief discussion of the alternative method in Appendix 22.1. In the next sec-
tion, we will make use of sample sizes in our calculation of the confidence interval around 
M, while continuing to ignore the sample variances.

TABLE 22.3 ■ The Parallels Between Confidence Intervals for m and M

CI for a Mean: m ± ta/2(sM) CI for a Meta-Mean: M ± ta/2(sM)

Statistic and Formula Parameter Statistic and Formula Parameter

m y ni
n

i= ∑ =1 / μ M m ki
k

i= ∑ =1 / μ

s y m ni
n

i
2

1
2 1= ∑ − −= ( ) ( )/ s2

S m M ki
k

i
2

1
2 1= ∑ − −= ( ) ( )/ *

s s nm
2 2= / sm

2 s S kM
2 2= / sM

2

s sm m= 2
sm

s sM M= 2
sM

 *The parameter estimated by S2 is discussed in Appendix 22.1.

LEARNING CHECK 1

1. State whether the following statements are true or 
false.
(a)  A report of three original experiments is part of the 

primary literature.
(b)  A report of three experiments replicating a clas-

sic study in psychology is part of the primary 
literature.

(c) A report that combines 25 replications of a clas-
sic study in psychology is part of the primary 
literature.

(d) M is a parameter.
(e) The expected value of M is μ.

2. m = {45, 60, 75} is a collection of means drawn from 
the primary literature. Compute M and the 95% 
confidence interval around M.

Answers

1. (a) True. (b) True. (c) False. (d) False. (e) True. 2. M = 60, s2 = 225, s S kM = 2/  = 8.6603. M ± tα/2(sM ) = 
60 ± 4.303(8.6603) = [22.73, 97.27].

META-ANALYSIS FOR SAMPLES OF DIFFERENT SIZES

Because meta-analysts don’t collect the data reported in the primary literature, sample 
size is certain to vary from study to study. So, does this make any difference? The answer 
depends on how different the sample sizes are and how many sample means are being com-
bined. Because larger samples provide more precise point estimates of μ, it would seem 
sensible to (somehow) give more weight to the means of large samples when computing 
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M. (Remember that the same logic was used to compute spooled
2  in Chapter 11.) If there are 

many samples of roughly the same size, then weighting means according to sample size 
probably makes little difference. If there are few means, computed from samples that differ 
greatly in size, then weighting means according to sample size will make a big difference. 
Therefore, the safest course of action is to always take sample size into account. But how?

Computing Means as Weighted Sums

Let’s review our definition of M:

M m kii
k= ∑ = /1

. (22.6a)

By now we’re familiar with subscripts, and in the following paragraphs we’ll see why they 
can be useful. Although we haven’t remarked on this before, there are actually two ways to 
read equation 22.6a. The first says sum m1, m2,…,mk and then divide this sum by k. To make 
this explicit, we can put the summation within parentheses as follows:

M m kii
k= ∑( )=1 / . (22.6b)

On the other hand, we could read equation 22.6a to say divide each of the means m1, m2,…, 
mk by k and then sum these fractions. To make this explicit, we can put the division within 
parentheses as follows:

M m kii
k= ∑ = ( )./1

(22.6c)

If you do an example for yourself (e.g., using the numbers [3, 6, 27]), you will see that 
these two interpretations of equation 22.6a produce exactly the same result, so the ambi-
guity makes no difference. For present purposes, however, equation 22.6c is very use-
ful. Remember that dividing by k is the same thing as multiplying by 1/k. Therefore, the 
equation

M
k
mii

k= ∑ =
1

1
* (22.6d)

produces exactly the same result as the previous three equations. These points might seem 
trivial, but they allow us to define M as a weighted sum and thus deal with the common 
situation in which sample sizes are different.

We refer to the following quantity as weight:

w
ki =
1
.

When each of the k sample means is multiplied by wi, these weighted means can be summed 
to define M as follows:

M w mi ii
k= ∑ = * .
1 (22.7a)

Equation 22.7a tells us to multiply each mean (mi ) by its corresponding weight (wi ) and 
then sum the products.

A weighted sum is a 
sum of numbers that 
have been multiplied 
by a weight. The sum 
of all weights equals 1.
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Weights can also be described more generally as

w
n
ni
i

ii
k=

∑ =1

.

For example, if there are k = 8 means with n = 5 scores contributing to each mean, then

w
n
n ki
i

ii
k=

∑
= = =

=1

5
5 8

1
8

1
*

.

In this case, a weight can be seen to represent the number of scores associated with the ith 
mean (ni ) as a proportion of the total number of scores associated with the k means ( nii

k
=∑ 1 ).  

We can see from this perspective that a weight can be defined very simply even if sample 
sizes are different.

There is no need for a separate step to compute weights, which are then applied to the 
mean. Instead, computing a weighted mean can be accomplished in one simple step as 
follows:

M
n m
n

i ii
k

ii
k= ∑

∑
=

=

*
.

1

1

(22.7b)

That is, we multiply each sample mean by its corresponding sample size and then divide 
the sum of these products by the total number of scores in all samples combined. Therefore, 
we can use equation 22.7b to compute M as a weighted sum when sample sizes are differ-
ent (or the same). This way of computing the mean as a weighted sum should feel familiar, 
because this is exactly how we computed GPA in the appendices of Chapter 1.

Computing M as a Weighted Sum for Unequal Sample Sizes

Table 22.4 illustrates the calculation of M as a weighted sum. The sample means (in column 2) 
and sample sizes (column 3) have been taken from Table 22.1. At the bottom of column 3, we 
see that the sum of the sample sizes is nii

k
=∑ 1  = 200, so M will be based on 200 scores. The fourth 

column shows the product of each mean with its associated sample size (ni * mi ). The sum of 
these products is n mii

k
i=∑ 1

*  = 9600. Therefore, using equation 22.7b, we find that

M
n m
n
i ii

k

ii
k= ∑

∑
= ==

=

* .1

1

9600
200

48

Before moving on, I want to reiterate that equations 22.7a and 22.7b produce exactly the 
same results. In the calculations above, we used equation 22.7b to compute M. If we had 
used equation 22.7a, we would first compute weights as w n ni i ii

k= ∑ =/
1 , as shown in the fifth 

column of Table 22.4. In this case, we can see that the n1 = 20 scores associated with m1 repre-
sent 10% of the total number of scores in the meta-analysis; i.e., w n ni i ii

k= ∑ =/ 1  = 20/200 = .1. 
When we multiply each mean by its corresponding weight, we obtain the products shown in 
the last column of Table 22.4. The sum of these products is M w mi ii

k= ∑ = *1  = 48, as shown at  
the bottom of the last column. Therefore, equation 22.7b is just a computationally simpler 
version of equation 22.7a.

We’ve seen that M = 47 when computed without considering sample size (bottom of 
column 2) and M = 48 when computed as a weighted sum (bottom of column 6). So, why 
are these two means different? Consider the second mean in Table 22.4, m2 = 50. This is the 
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largest mean in the sample of eight means, and it also has the largest sample size, n2 = 60.  
In contrast, the smallest mean m8 = 43 is associated with the smallest sample size, n = 10. 
Therefore, when M is computed as a weighted sum, more weight is given to m2 than to 
m8. As a consequence, the mean computed as a weighted sum (48) is larger than when all 
means are given equal weight (47). Because means of large samples are more precise esti-
mators of μ than means of small samples, the mean of means based on the weighted sum 
will be closer to μ, on average, than a mean of means that gives equal weight to all samples.

Computing S2 as a Weighted Sum for Unequal Sample Sizes

We now turn to the question of computing our estimate of sM
2  when sample sizes are differ-

ent. Previously we used equation 22.2 to compute the variance about M:

S
m M
k
ii

k
2

2
1

1
=

−∑
−

= ( )
.

This quantity can be computed as a weighted sum as follows:

S
n m M

n
k
k

i ii
k

ii
k

2
2

1

1 1
=

−∑
∑ −

=

=

( )
. (22.8)

In equation 22.8, squared deviations from M [i.e., (mi - M)2] are multiplied by their cor-
responding sample sizes and then the sum of these squared deviations is divided by the 
number of scores ( nii

k
=∑ 1 ). This quantity is a biased estimator and so it is multiplied by  

k/(k-1) to correct the bias. (Please see Appendix 22.1 for a discussion of the parameter 
estimated by S2.)

Table 22.5 illustrates the calculation of n m Mi ii
k * ( )−∑ =

2
1 . The first two columns iden-

tify the studies (i) and study means (mi ). Column three shows the squared deviation of each 

TABLE 22.4 ■ Computing the Mean as a Weighted Sum When Sample Sizes Are Unequal

i mi ni ni*mi wi = ni / ∑k
i=1 ni wi*mi

1 45 20 900 0.10 4.50

2 50 60 3000 0.30 15.00

3 48 30 1440 0.15 7.20

4 48 40 1920 0.20 9.60

5 49 20 980 0.10 4.90

6 47 10 470 0.05 2.35

7 46 10 460 0.05 2.30

8 43 10 430 0.05 2.15

nii
k
=∑ 1 /k nii

k
=∑ 1 n mii

k
i=∑ 1 * wii

k
=∑ 1 w mii

k
i=∑ 1 *

47 200 9600 1 48
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sample mean (mi) from M = 48, which was computed as 
a weighted sum. Column 4 shows sample sizes, and col-
umn 5 shows the squared differences multiplied by sam-
ple size. Finally, the bottom of column 5 shows the sum of 
weighted squared differences (740), which is the first term 
in equation 22.8.

The calculation of sM
2  continues as follows. First, 

calculate

S
n m M

n
k
k

i ii
k

ii
k

2
2

1

1 1

740

200

8

7
4 229=

−∑
∑ −

= ==

=

( )
* . .

Then compute the square of the estimated standard error 
using equation 22.3:

sM
2  = S2/k = 4.229/8 = 0.529.

Finally, compute the estimated standard error itself using 
equation 22.4:

s sM M= = =2 0 529 0 727. . .

The last step is to compute a confidence interval around 
M. As before, we will compute the 95% confidence interval, using equation 22.5. There are 
k-1 df; from the t-table, we find that tα/2 = 2.365. Therefore, the 95% confidence interval is

CI = M ± ta/2(sM ) = 48 ± 2.365(0.727) = [46.28, 49.72].

We have 95% confidence in this interval because we know that 95% of all intervals com-
puted this way will capture μ. An example of these calculations performed in Excel is given 
in Appendix 22.2.

A Computational Shortcut

When computing S2 using equation 22.8, we multiplied the weighted sum by k/(k-1) to 
eliminate bias; from this unbiased quantity, we computed sM

2  = S 2/k. We can compute sM
2  

more simply using the following formula:

s
n m M
k nM

i ii
k

ii
k

2
2

1

11
=

−∑
− ∑

=

=

( )

( )*
.

We won’t step through why this equation is equivalent to sM
2  = S2/k, but if you substitute in 

the numbers computed above, you will see that they are.

Discussion

We already noted that point estimates in meta-analysis depend on whether sample sizes 
are taken into account. Because larger samples are better estimates of μ, M computed as a 
weighted sum will fall closer to μ, on average, than M computed as a simple (unweighted) 
mean. That is, M computed as a weighted sum is a better point estimate of μ.

Similar comments hold for confidence intervals. Assuming that all samples are drawn 
from the same population, the estimated standard errors will be smaller, on average, when 

TABLE 22.5 ■ Computing S2

i mi (mi - M)2 ni ni * (mi - M)2

1 45 9 20 180

2 50 4 60 240

3 48 0 30 0

4 48 0 40 0

5 49 1 20 20

6 47 1 10 10

7 46 4 10 40

8 43 25 10 250

∑k
i=1ni

n m Mii
k

i=∑ −1
2* ( )

200 740
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sample size is taken into account. This is because the largest samples will produce means 
that fall closer to M, on average. Because large samples make a greater contribution to M, 
the squared deviations of the large sample means from M will be smaller, and these smaller 
deviations will be given greater weight. For these reasons, as we noted above, sample size 
should be taken into account when conducting a meta-analysis. That is, M and sM

2  should 
be computed using weighted sums.

As a final point, the meta-analysis described above can be used to combine many dif-
ferent statistics. We will reuse the symbols M and S2 in all of these contexts to avoid a pro-
liferation of symbols. This will keep things simpler in one sense but will also require some 
memory work to keep track of what is being estimated in each case. We will see an example 
of this point in a later section.

*Alternative Methods of Meta-Analysis

The method of meta-analysis described above is a modest variant of a method described by 
Hunter and Schmidt (1990), which is widely used in the meta-analysis literature. An alterna-
tive method that is at least as widely used was described by Hedges and Olkin (1985). The 
main difference between the Hunter-Schmidt and Hedges-Olkin methods is that Hedges and 
Olkin make use of the sample variances to compute the weights. In this method, the weights 
applied to the sample means are given by

w
s ni
i i

=
1

2
/
.

The denominator of this equation is simply the square of the estimated standard error of 
the mean for the ith sample mean; i.e., s s nm i ii

2 2= / . The logic is that samples with smaller 
variances are more precise estimates of μ and are therefore given greater weight. So, both 
sample size and sample variance affect the weight given to a sample mean.

A more complete description of the Hedges and Olkin (1985) method is given in Appen-
dix 22.3. In the following sections, we will continue with the Hunter-Schmidt method 
because it is a simple extension of the confidence intervals used in all previous chapters, and 
because it seems to provide confidence intervals that are generally similar to those provided 
by the Hedges-Olkin method (e.g., Hafdahl & Williams, 2009).

LEARNING CHECK 2

1. Why should we compute M and S2 as weighted sums?

2. If m = [10, 20, 20, 50, 30] are the means of five 
samples, and n = [60, 40, 60, 20, 20] are the sample 
sizes, compute M and S2 as weighted sums.

3. Compute the 95% confidence interval around M.

Answers

1. M estimates μ. Because the means of larger samples 
are better estimators of μ than the means of smaller 
samples, weighting samples means according to 
sample size will make M a better estimator of μ. 
Similar comments apply to S2, which will be smaller, 
on average, when computed as a weighted sum.

2. M = 21, S 2 = 161.25.

3. CI = M ± ta/2(sM ) = 21 ± 2.776(5.6789) = 21 ± 15.7672 = 
[5.24, 36.76].
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FIXED-EFFECTS VERSUS RANDOM-EFFECTS MODELS

The model described above assumed that all samples were drawn from the same population 
of scores; hence, all sample means estimate the same population mean. This conceptualiza-
tion is sometimes referred to as an instance of the fixed-effects model. It is particularly sim-
ple to think about, and one might even wonder whether another conceptualization is possible.

There is an alternative to the fixed-effects model, however. It is called the random-effects 
model. Rather than assume that all samples were drawn from the same population, the ran-
dom-effects model permits the possibility that samples were drawn from different popula-
tions. Although the random-effects model is slightly more complicated theoretically, it is more 
realistic than the fixed-effects model. Fortunately, despite this additional theoretical complex-
ity, the Hunter-Schmidt meta-analysis is performed exactly as with the fixed-effects model. 
(This is not true for the Hedges-Olkin model described in Appendix 22.3.)

If we continue with the counting-to-10 example, then the means combined in a meta-analysis 
are very likely to have come from research labs in different parts of the world. The essence of the 
random-effects model is that we don’t assume that the scores obtained in each part of the world 
come from distributions having identical parameters.

Figure 22.2 illustrates the concepts underlying the random-effects model. There are 16 
distributions of age-of-counting-to-10 scores. To make things concrete, each distribution 
is associated with an American city. Although only 16 distributions are shown (because of 
space limitations), it’s possible for there to be an unlimited number of such distributions. 
Each population of ages has a mean and a standard deviation.

In the random-effects model, we think of there being a distribution of population 
means. In the 16 distributions in Figure 16.2, the mean of each population is shown. This 
distribution of population means itself has a mean, which we call μMeta, and variance, which 
we call s

Meta

2 . These are defined as

µ
µ

Meta
= ∑ = ii

N

N
1

and

σ
µ µµ

Meta

2 1
2

=
∑ −= ( )

.
ii

N

N

In these formulas, N is the number of populations.
In the random-effects model, the mean of sample means, M, no longer estimates the 

mean of a single population, as it does in the fixed-effects model. Rather, M estimates 
μMeta, the mean of all population means. (This is an example of the symbol M being used to 
denote a statistic that estimates different parameters.)

The concepts behind the random-effects model are actually very similar to the concepts 
underlying estimates of population means from sample means. Each score contributing to a pop-
ulation mean is subject to measurement error. For example, in Chapter 1 we noted that each time 
we measure a person’s height, we will come up with a slightly different measurement, no matter 
how accurate our measuring device is. It is just the nature of measurement to have measurement 
error. So, when we measure a person’s height, this measurement is really an estimate of the mean 
of all possible measurements we could take. Therefore, when we average the scores of indi-
viduals, we are really averaging estimates of each individual’s mean score. The random-effects 
model is very similar. Each sample mean estimates its own population mean. Therefore, when 
we average the means of samples, we are really averaging estimates of each population’s mean.

Furthermore, when we draw a sample of scores from a population, we don’t assume that 
we’ve drawn every single score from the population. This is true by definition because a 
sample is a subset of a population. The same point applies to meta-analysis. The means that 

The fixed-effects 
model, in its simplest 
form, assumes that 
all sample means 
in a meta-analysis 
represent different 
random samples from 
the same distribution.

The random-effects 
model allows for 
the possibility that 
sample means in 
a meta-analysis 
represent random 
samples drawn from 
different distributions.
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µMeta = 50

µ1 = 46.9
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µ2 = 48.4

µ3 = 47.8

µ5 = 49.8

µ7 = 55.1

µ9 = 52.8

µ11 = 42.7

µ13 = 47.0

µ15 = 52.3

µ4 = 44.6

µ6 = 49.3

µ8 = 50.4

µ10 = 49.5

µ12 = 44.1

µ14 = 48.3

µ16 = 46.7

FIGURE 22.2 ■ Sixteen Distributions of Scores

In all distributions, the scores are age-of-counting-to-10, in months. The mean of each population is show (above the peak of 
the distribution). These 16 distributions are a subset of a much larger number of distributions. (Imagine similar distributions 
for each city in the United States, North America, or the world.) The mean of all population means is μMeta = 50.

we’ve drawn are a sample of the possible means that could have been drawn. Therefore, when 
we think of the sampling distribution of M, we do not assume that we are repeatedly sampling 
from the same populations, such as the 16 cities shown in Figure 22.2. Rather, the sampling 
distribution of M represents means of a theoretically infinite number of populations whose 
means vary about μMeta with standard deviation σMeta.

Although the fixed- and random-effects models estimate different parameters (μ in 
the case of the fixed-effects model, and μMeta in the case of the random-effects model), the 
calculation in both cases is CI = M ± tα/2(sM ). If the fixed-effects model correctly describes 
the underlying situation, then our confidence interval would be an interval estimate of μ. If 
the random-effects model correctly describes the underlying situation, then our confidence 
interval would be an interval estimate of μMeta.
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SIGNIFICANCE TESTS

Our focus has been, as always, on estimating a population parameter. As we’ve seen in previ-
ous chapters, confidence intervals can be used to test any null hypothesis of interest. In the 
meta-analysis described in the previous section, the 95% CI for M was [46.28, 49.72]. Let’s 
now assume that M estimates μMeta, which represents the mean of population means for age-
of-counting-to-10 scores in the United States. If one happened to know that μMeta in Canada 
was 45, then we could set up a hypothesis test to assess whether or not 45 is a plausible value 
for μMeta in the United States. Our hypotheses would be

H0: mMeta = 45;

H1: mMeta ≠ 45.

Because the interval [46.28, 49.72] does not include μμ = 45, we would reject H0 and con-
clude that 45 is an implausible value for μMeta in the United States. We would say that the 
result is statistically significant. Once again, statistically significant just means that if H0 
were true, it would be very unusual for M to be so far from μMeta that the confidence interval 
around M does not capture it. In our example, if μUSA = μCanada, it would be very unusual for 
M to be so far from μCanada that the 95% confidence interval around M does not capture it.

What do these results mean? If the difference between μCanada and μUSA is statistically sig-
nificant, is this a good thing, a bad thing, or what? If the age of counting to 10 is greater in the 
United States than Canada, should there be a call to action to get children counting earlier in 
the United States, or does it reflect a healthy attitude toward child rearing, in which children 
are not pushed to attain counting skills too early? Furthermore, is the difference between μMeta 
= 45 and M = 48 really that important? Maybe yes, maybe no. These are questions that have 
nothing to do with statistics. Statistics simply provide guidance for human decision makers.

If educators in the United States interpret these results to mean that more efforts should 
be devoted to getting children to count earlier, then the question becomes how to do this. 
A variety of methods can be tried and compared. Judgments about which of these methods 
works best and, perhaps, is most cost-effective require further study. Questions like these 
(i.e., which of two methods yields the greater change in age-of-counting-to-10 scores) were 
the subject of Chapters 11 and 12.

LEARNING CHECK 3

1. State whether the following statements are true or false.
(a) The assumptions of the random-effects model and 

fixed-effects model are identical.
(b) Meta-analyses are performed the same way using 

the random-effects model and the fixed-effects 
model.

(c) The fixed-effects model assumes a potentially infi-
nite number of population means.

(d) M estimates μMeta 
in the fixed-effects model. 

(e) µ µ
Meta

/= ∑ = ii
N N
1

.
(f) σ µ µ

Meta Meta

2

1

2
= −∑ = ( ) .ii

N

2. m = [10, 20, 20, 50, 30] and n = [60, 40, 60, 20, 20]. 
Compute the 95% confidence interval around M. Test 
the null hypothesis H0: μMeta = 35.

Answers

1. (a) False. (b) True. (c) False. (d) False. (e) True. (f) False.

2. CI  = M ± ta/2(sM ) = 21 ± 2.776(5.6789)   
= 21 ± 15.7672 = [5.24, 36.76].

 We retain H0 because the 95% confidence interval 
includes 35.
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META-ANALYSIS COMBINING EFFECT SIZES

The preceding discussion showed a very general approach to meta-analysis in which we 
combined estimates of a single population mean (fixed-effects model) or the mean of 
population means (random-effects model). However, as noted at the beginning of Part 3, 
researchers are most often interested in the association between variables; this could be 
the difference between two population means or the correlation between two variables. 
We will now apply meta-analysis to effect sizes derived from the difference between two 
means.

The simplest question we can ask in clinical science is “How well does some treat-
ment work?” This question typically takes the form of asking how much better a treatment 
works than a placebo. Turner, Matthews, Linardatos, Tell, and Rosenthal (2008) consid-
ered the weight of evidence relating to the effectiveness of pharmacological treatments 
for depression. They performed a meta-analysis of the effect sizes found in 74 relevant 
studies, some of which were published and others of which were not. Turner et al. (2008) 
made many important observations about what does and does not make it into the scientific 
literature, and these points will be addressed later. For the moment, however, we will think 
about the meta-analyses they conducted on effect sizes. We will see that meta-analyses 
that combine effect sizes can be conducted in exactly the same way as meta-analyses that 
combine means.

Many of the studies considered by Turner et al. (2008) made use of the Hamilton Depres-
sion Rating Scale (HDRS); see Figure 22.3. This is a 17-item, clinician-administered rating 
scale. For each of the 17 items, a clinician rates the patient on a 3- to 5-point scale to indicate 
the severity of the associated symptom of depression. The minimum score is 0 and the maxi-
mum score is 55. Scores between 0 and 7 are considered to be in the normal range and scores 
above 20 indicate moderate to severe depression.

At the end of Chapter 11, we noted that dependent variables and statistics may dif-
fer from study to study. Therefore, other measures of depression are available including 
the Beck Depression Inventory (BDI), the Montgomery-Åsberg Depression Rating Scale 
(MADRS), or the number of days of work missed following the intervention. However, for 
simplicity, we will consider eight hypothetical studies that employed the HDRS as the pri-
mary measure of depression. In these eight hypothetical studies, the mean of the placebo 
group is expected to be higher than the mean of the treatment group; i.e., the prediction 
is that μplacebo - μtreatment > 0, or δ > 0. Therefore, for this illustration, positive estimates of 
δ (i.e., d) would mean an improvement, because the treated group(s) would show lower 
HDRS scores.

Figure 22.4 follows the same format as Figure 22.1 and summarizes the results of the 
eight hypothetical studies. The white and light blue dots represent the results of unpub-
lished and published studies, respectively, along with their 95% confidence intervals, and 
the dark blue dot shows the weighted mean (M) of the eight individual effect sizes, along 
with its 95% confidence interval. As always, M is, on average, a more precise estimate of 
the effect than any of the individual estimates.

Estimating δ or δMeta

The distinction between the fixed- and random-effects models of meta-analysis applies equally 
to estimating population means and effect sizes. In the fixed-effects model, all values of d 
estimate the same δ. This means that the eight placebo samples were all drawn from the same 
population and the eight treatment samples were all drawn from the same population. In the 
random-effects model, all values of d estimate a different δ. This means that each study drew 
scores from different treatment and placebo populations. The meta-analysis estimates the mean 
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FIGURE 22.3 ■ Hamilton Depression Rating Scale 

The Hamilton Depression Rating Scale (HDRS) is a clinician-administered rating scale. The clinician rates the patient on each 
item to indicate the severity of the associated symptom of depression. The minimum score is 0 and the maximum score is 55. 
Scores between 0 and 7 are considered to be in the normal range and scores above 20 indicate moderate to severe depression.
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of many different population δs, which we call δMeta. As in 
the case of meta-analysis for a single mean, the calculations 
are the same whether we are estimating δ or δMeta.

We will use exactly the same terminology as before 
to conduct the meta-analysis. Equation 22.9 computes 
the average effect size (M) as a weighted sum:

M
n d
n
i ii

k

ii
k= ∑

∑
=

=

*
.

1

1

(22.9)

Equation 22.10 computes sM as a weighted sum:

s
n d M
k nM

i ii
k

ii
k=
−∑

− ∑
=

=

( )

( )
.

2
1

11
(22.10)

Converting Statistics to d

Table 22.6 summarizes the data plotted in Figure 22.4. 
It was noted in Chapter 11 that studies addressing the 
same general question may use different dependent 
variables (e.g., the HDRS, the BDI, the MADRS, or 
number of days of work missed) and different statis-
tics (e.g., d, tobs, r2, or confidence intervals). We will 
assume in this example that all eight studies used the 

same dependent variable. However, to provide an illustration of the real-world problem 
of combining different statistics, Table 22.6 shows four different statistics (d, tobs, r

2, 
and 95% confidence intervals) that may be computed from the same dependent variable. 
In this section, we will review how to convert tobs and r2 to d. These conversions were 
introduced in Chapter 11. We will also see how to extract information from confidence 
intervals to then compute d.

−1.0 −0.5 0.0 0.5 1.0

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Meta-analysis

Effect Size

FIGURE 22.4 ■ Hypothetical Data

Effect sizes from eight studies submitted to a meta-analysis. 
White dots correspond to effect sizes from unpublished 
studies, light blue dots correspond to effect sizes from 
published studies, and the dark blue dot represents the result 
of a meta-analysis that combines the results of all eight studies.

TABLE 22.6 ■ Hypothetical Data Combined in a Meta-Analysis

Study Statistic Value ntreatment nplacebo

Expressed  
as d

Study 1* d 0.16 62 63 0.16

Study 2 tobs 2.57 75 75 0.42

Study 3 r2 0.0301 82 78 0.35

Study 4* 95% CI [-2, 3.93] 48 52 0.13

Study 5 d 0.32 65 60 0.32

Study 6* tobs 1.93 71 74 0.20

Study 7 r2 0.0389 84 81 0.40

Study 8 95% CI [1, 4.12] 165 175 0.35

*Denotes unpublished studies.
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Converting tobs to d

It was shown in Chapter 11 that tobs is converted to d as follows:

d t
n n

= +
obs

1 1

1 2

. (22.11a)

An alternative version that avoids the need to compute two separate fractions is

d t n n
n n

=
+

obs

1 2

1 2

. (22.11b)

Equation 22.11b allows one to defer rounding until the last step, and thus produces a more 
accurate result. When applied to the results of Study 2 in Table 22.6, tobs = 2.57 is converted 
to d as follows:

d t n n
n n

=
+

=
+

=obs
1 2

1 2
2 57 75 75

75 75
0 42.

*
. .

Converting r2 to d

In Chapter 11, it was also shown that r2 is converted to d as follows:

d df r
r n n

=
−
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2

2

1 2
1

1 1
. (22.12a)

An alternative version of this equation also avoids the need to compute and then add two 
fractions:

d df r
r

n n
n n

=
−











+







within

2

2

1 2

1 2
1

. (22.12b)

When applied to the results of Study 3 in Table 22.6, r2 = 0.0301 is converted to d as follows:
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Converting (m1 - m2) ± ta/2(sm1–m2
) to d

We’ve noted many times that confidence intervals are the most useful and most general 
method of data reporting. Unfortunately, if you haven’t been given the two sample means and 
variances, then converting a confidence interval to d requires deconstructing the confidence 
interval to recover the quantities needed to compute d. Although there are several steps in 
this process, they are not complicated. Stepping through this process helps to consolidate our 
understanding of the components of the confidence interval. The definition of d in this case is

d m m
s

=
−1 2

pooled

.
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To compute this quantity, we will have to recover m1 - m2 and spooled from a confidence 
interval.

We start by assuming we’ve been given only the confidence limits (m1 - m2) ± tα/2 
(sm m1 2- ). We denote the upper limit as upper and the lower limit as lower. The difference 
between the two sample means is simply the middle point of this interval. So, if we take the 
average, we find

m1 - m2 = [upper + lower]/2. (22.13)

Recovering spooled from the confidence interval requires three steps. We start by recov-
ering the margin of error (moe), which is defined as tα/2(sm m1 2- ). The moe is simply the dif-
ference between m1–m2 and one of the confidence limits. It can be computed as follows:

moe = upper - (m1 - m2). (22.14)

Because moe = tα/2(sm m1 2- ), we can recover sm m1 2-  by dividing moe by tα/2 as follows:

s moe
tm m1 2

2

− =
α/

. (22.15)

Finding tα/2 is not complicated. Assuming we know the sizes of the two samples, we can 
compute dfwithin as n1 + n2 - 2. Assuming also that we know the level of confidence (e.g., 
95%), we can find tα/2 using T.INV.2T in Excel (see Appendix 10.1). Using Excel, we find that 
tα/2 = T.INV.2T(α, dfwithin). The penultimate step is to compute spooled, which is accomplished 
as follows:

s s n n
n nm mpooled = +−1 2

1 2

1 2

. (22.16)

Having deconstructed the confidence interval to recover m1 - m2 and spooled, we can com-
pute the estimated effect size as

d m m
s

=
−1 2

pooled

.

The steps just outlined will be applied to the confidence interval shown in row 4 of 
Table 22.6. There we see that the 95% confidence interval for m1 - m2 is [-2, 3.93], based 
on samples of size 48 and 52. Using this information, the following steps allow us to 
recover d.

Step 1. Compute m1 - m2. This requires knowing the upper and lower limits of the confi-
dence interval.

m1 - m2 = [3.93 + -2]/2 = 1.93/2 =.965.

Step 2. Compute the margin of error (moe). This requires knowing the upper limit of the 
confidence interval and the center of the interval, m1 - m2.

moe = upper - (m1 - m2) = 3.93 - 0.965 = 2.965.
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Step 3. Compute the estimated standard error of m1 - m2 (sm m1 2- ). This requires knowing 
the moe and tα/2. In this case, there are 48 + 52 - 2 = 98 degrees of freedom. Using 
Excel, we can find that tα/2 = 1.984. Therefore,

s moe
tm m1 2

2

2 965

1 984
1 494− = = =

α/

.

.
. .

Step 4. Compute spooled from sm m1 2-  as follows:

s s n n
n nm mpooled = +

=
+

=−1 2

1 2

1 2

1 494
48 52

48 52
7 464.

*
. .

Step 5. Compute d from m1 - m2 and spooled in the usual way:

d m m
s

=
−

= =1 2 0 965
7 464

0 13
pooled

.

.
. .

Calculating the Confidence Interval

Once all statistics have been converted to d, it is straightforward to compute the mean 
effect size (M) as a weighted sum. Table 22.7 shows these calculations. The first column 
shows indexes that denote the eight studies. The second column shows the estimated effect 
sizes, and the third column shows the number of scores in the corresponding study; i.e., ni = 
ntreatment + nplacebo. The last column shows the products of ni and di. The sum of these products 
is n di ii

k
*=∑ 1

 = 406 and the total number of scores is nii
k
=∑ 1  = 1310. Therefore, M = 406/1310 

= 0.3099, which we’ll round to 0.31.
Once M has been computed, equation 22.8b (the computational shortcut) can be used to 

compute sM
2 . In Table 22.8, the study indexes and estimated effect sizes are shown in the first 

TABLE 22.7 ■ Computing the Mean Effect Size as a Weighted Sum

i di ni ni * di

1 0.16 125 20.00

2 0.42 150 63.00

3 0.35 160 56.00

4 0.13 100 13.00

5 0.32 125 40.00

6 0.20 145 29.00

7 0.40 165 66.00

8 0.35 340 119.00

nii
k
=∑ 1 n dii

k
i=∑ 1 *

1310 406.000
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TABLE 22.8 ■ Computing the Mean Squared Deviation From M = 0.31

i di (di - M)2 ni ni * (di - M)2

1 0.16 0.0225 125 2.813

2 0.42 0.0121 150 1.815

3 0.35 0.0016 160 0.256

4 0.13 0.0324 100 3.240

5 0.32 0.0001 125 0.013

6 0.20 0.0121 145 1.755

7 0.40 0.0081 165 1.337

8 0.35 0.0016 340 0.544

nii
k
=∑ 1 n d Mi ii

k * ( )−∑ =
2

1

1310 11.7710

and second columns. The third column computes the squared deviation of each di from M = 
0.31; i.e., (di - M)2. The fourth column shows the sample sizes and the fifth column shows the 
products of ni and (di - M)2. The sum of these products is n d Mi ii

k *( )−∑ =
2

1  = 11.77 and the 
total number of scores is nii

k
=∑ 1  = 1310. From these numbers, we can compute sM as follows:

s
n d M

k nM
i ii

k

ii
k=
−∑

− ∑
= ==

=

( )
( )*

.
*

. .
2

1

11
11 77
7 1310

0 0361

The last step is to compute a 95% confidence interval around M using equation 22.5. 
There are k-1 = 8 - 1 = 7 df, and from the t-table, we find that tα/2 = 2.365. Therefore, the 
95% confidence interval is

CI = M ± ta/2(sM ) = 0.31 ± 2.365(0.0361) = [0.22, 0.40].

We have 95% confidence in this interval because we know that 95% of all such intervals 
will capture μδ.

The meta-analysis procedures described above are very general. We could go on to 
show how to conduct a meta-analysis for correlation coefficients, as discussed in Chapter 
15. However, the procedure is exactly like the two examples already shown, so nothing new 
would be covered.

The Validity of Meta-Analysis Depends on the Available Data

It was mentioned earlier that Turner et al. (2008) made some important observations about 
what studies are published in the research literature. In fact, investigating which studies 
are published and which aren’t was the purpose of their meta-analysis. To understand their 
study, we must first review the testing process that drugs must undergo before they are 
approved for sale in the United States.
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In the United States, the Food and Drug Administration (FDA) is responsible for assess-
ing whether drugs are safe and effective. As a final stage of the approval process, drugs 
must undergo clinical trials. According to Turner et al. (2008), FDA approval requires, in 
essence, statistical superiority of a candidate drug over a placebo in two well-controlled 
studies. That is, there must be a statistically significant improvement over a placebo.

Clinical trials must be registered with the FDA. A contract of sorts is made in which the 
nature of the experiment is agreed on, as is the nature of the primary outcomes. For exam-
ple, scores on the HDRS might be primary outcomes and scores on other measures such as 
the BDI might be secondary outcomes. The FDA maintains records of all clinical trials and 
their results, which can be obtained through freedom of information requests. In this way, 
Turner et al. (2008) were able to obtain the results of 74 clinical trials related to pharmaco-
logical treatments for depression.

Turner et al. (2008) wondered if the FDA decision about drug efficacy determined 
whether the study would be published. The FDA classifies the outcomes of clinical tri-
als as positive, negative, or questionable. Figure 22.5 shows the association between 
the FDA decision about the drug and whether a report of the study was published in an 
academic journal. Of the 74 studies, 38 were judged positive by the FDA. Of these 38 
positive outcomes, 37 were published and one was not.

Of the 74 studies, 24 were judged negative by the FDA. Three of the negative studies 
were published and written in a way that agreed with the FDA decision and 16 were not 
published. However, 5 of these 24 studies were published but written in a way that con-
flicted with the FDA conclusion. That is, “the highlighted finding conflicted with the FDA-
defined primary outcome” (Turner et al., 2008, p. 255).

The remaining 12 studies were judged questionable, meaning that the FDA did not con-
sider them positive or negative. Questionable studies did not show statistical significance 
on the primary outcome measures but did show statistical significance on one or more of 
the secondary outcomes. Of these 12 questionable studies, six were not published and six 
were but were written in a way that conflicted with the FDA conclusion.

Figure 22.5 summarizes the fates of the 74 studies in the meta-analysis. Almost all 
of the studies with positive outcomes were published (37 of 38), but only three of the 
negative or questionable outcomes were published and written in a way the agreed with  
the FDA conclusion (3 of 24). Of 12 questionable studies, six were published but drew 
conclusions that conflicted with those of the FDA. There-
fore, anybody reading the literature hoping to assess the 
effectiveness of these antidepressants (your doctor, for 
example) would conclude that the evidence overwhelm-
ingly supported the conclusion that the drugs were effec-
tive. This reader would not be aware of the many nega-
tive outcomes that were not published or the conflicts 
with the FDA conclusions.

The meta-analysis conducted by Turner et al. (2008) 
showed that the mean effect size was 0.37 for the FDA 
studies that were eventually published and 0.15 for the 
unpublished FDA studies. This is a clear example of the 
file-drawer problem. In general, statistically significant 
results are published and those failing to attain statistical 
significance are not. An example of this problem is illus-
trated in Figure 22.4. In our hypothetical meta-analysis, 
the light blue dots represent studies that were published 
and the white dots represent studies that weren’t. In our 
example, as in the Turner et al. study, the unpublished 
effect sizes were smaller than the published effect sizes.

FIGURE 22.5 ■ FDA Decisions and Publication

The relationship between FDA decisions and publication 
status for the 74 studies considered by Turner et al. (2008).
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Turner et al. (2008) were not able to say why the negative outcomes were not published. 
It could be that the authors of the studies chose not to submit them for publication. Or it could 
be that journal editors rejected the papers because the results were not statistically signifi-
cant. Whatever the reason, the paper by Turner et al. highlights the fact that a meta-analysis 
is only as good as the available data. If only positive outcomes and positive replications 
make it into the literature, then the literature will have little value. Turner et al. were very 
fortunate to have data on unpublished studies. Most meta-analysts are not so fortunate.

LEARNING CHECK 4

1. Convert the statistics in studies 6, 7, and 8 in Table 
22.6 to d. That is,
(a)  Convert tobs from row 6 to d.
(b)  Convert r2 from row 7 to d.
(c)  Convert the 95% confidence interval from row  

8 to d.

2. Table 22.6 shows five hypothetical studies that were 
published and three that were not.
(a) Compute the 95% confidence interval around the 

mean effect size for the five published studies.
(b) Compute the 95% confidence interval around the 

mean effect size for the three unpublished studies.

Answers

1. Converting statistics to d.
(a) tobs = 1.93, n1 = 71, n2 = 74.

d t n n
n n

=
+

=
+

= =

obs
1 2

1 2

1 93 71 74
71 74

1 93 0 1661 0 32

.
*

. * . . .

(b) r2 = 0.0389, n1 = 84, n2 = 81.

d df r
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1
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163
0 0389

0 9611
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.


+







84 81

84 81*

= (0.0405) (0.0243) =163 0 40. .

(c) lower = 1, upper = 4.12, n1 = 165, n2 = 175
  m1 - m2 = [4.12 - 1]/2 = 2.56

  moe = upper - (m1 - m2) = 4.12 - 2.56 = 1.56

  sm m1 2-  = moe/ta/2 = 1.56/1.967 = 0.7931

s s n n
n nm mpooled

=
+

=
+

=−1 2

1 2

1 2

0 7931
165 175

165 175
7 3089.

*
.

= =d
m m
s=
−1 2 2 56

7 3089
0 35

pooled

.
.

.

2. Meta-analyses for published and unpublished studies.
(a)  Published

  M = 0.366, sM = 0.0167, df = 4, tα/2 = 2.776
  M ± tα/2(sM ) = [0.32, 0.41]

(b)  Unpublished
  M = 0.168, sM = 0.0202, df = 2, tα/2 = 4.303
  M ± tα/2(sM ) = [0.08, 0.25]

STEPS IN CONDUCTING A META-ANALYSIS

The Turner et al. (2008) study is an excellent meta-analysis. However, it differs in some 
ways from most meta-analyses in the literature. One of the biggest differences is that the 
studies selected for inclusion by Turner et al. were determined by the studies that regis-
tered for clinical trials with the FDA. This is a very clearly defined source of studies that 
provided a wealth of data. Most meta-analyses do not have such a clearly defined source for 
studies nor access to such extensive data. In the following paragraphs, we will review the 
elements of a meta-analysis and comment briefly on the challenges associated with each.
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Formulating a Question

The first step in a meta-analysis is to formulate a clear question or questions to be answered. 
In the case of Turner et al. (2008), the questions were about the effectiveness of pharmaco-
logical treatments of depression and the relationship between FDA decisions and publica-
tion. The question about effectiveness is a well-formed question, and many studies have 
addressed it over the years. Similar questions could ask about the health risks associated 
with sugar, salt, or coffee, or the health benefits of exercise, reading, or social engagement. 
One could ask about the relative merits of phonics versus whole language approaches to 
reading instruction, the costs and benefits of working in open offices, the effects of televi-
sion exposure on cognitive development, or the changes in fluid cognition with aging.

However, each of these questions might be too broad to be manageable. For exam-
ple, does health risk mean cardiovascular health, muscle tone, mental health, or something 
else? Therefore, it is necessary to narrow the question to something more manageable, such 
as the association between salt consumption and cardiovascular health.

Collect Studies

Collecting studies to be included in a meta-analysis is a two-step process. First, potential 
studies for inclusion must be identified, and then these must be reduced to those meeting 
more stringent inclusion criteria.

Searching for Studies

Once a question has been formulated, the search for relevant research begins. The first 
part of this search is easier than ever. There are many science databases that can be 
searched to find articles addressing the question of interest. Two of the databases rel-
evant to psychology are PubMed (pubmed.gov) and PsycINFO. Your university undoubt-
edly provides access to many more such databases, and you will be introduced to these 
as part of your training in psychology. These databases can be searched to find research 
articles with (i) specific keywords in the titles or abstracts, (ii) publication years, or  
(iii) authors’ names.

As you know from using Google or other search engines, choosing appropriate search 
terms is critical to obtaining useful results. For example, I just did a Google search with 
the terms “salt” and “cardiovascular health,” and Google returned 434,000 results. You 
can be sure that most of these links do not provide high-quality scientific results pertain-
ing to this question. However, the same kind of problem exists with scientific databases. 
When I searched PubMed with the same terms, links to 2329 articles were returned. These 
articles are quite heterogeneous. For example, the first result returned had the title “Early-
Stage Heart Failure With Preserved Ejection Fraction in the Pig: A Cardiovascular Mag-
netic Resonance Study.” The sixth was titled “Land Use, Transport, and Population Health: 
Estimating the Health Benefits of Compact Cities.” These two articles may or may not be 
relevant to the meta-analyst interested in the association between salt consumption and 
cardiovascular health.

As we saw with the Turner et al. (2008) study, the file-drawer problem can be a major 
limitation in a meta-analysis. There is always the strong possibility that the only studies 
in the literature are those that made it through the p < .05 filter. Therefore, a challenge to 
performing a meta-analysis is to find unpublished articles pertaining to the question that 
has been formulated. A landmark in the history of meta-analysis was a report by Smith and 
Glass (1977) that examined the effectiveness of psychotherapy. Smith and Glass searched 
through published bibliographies (i.e., precursors to the electronic versions of databases 
we use today) and the reference lists of the papers themselves.
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By searching Dissertation Abstracts (a database of masters and doctoral theses), Smith and 
Glass (1977) were able to locate some relevant studies that were unpublished. However, many 
other unpublished studies have left no trace anywhere and are therefore unavailable to the 
meta-analyst. This is a huge vulnerability of the entire psychological literature, and it may take 
years to eliminate the damaging effects that the p < .05 filter has had.

Excluding Studies

Although locating articles relevant to the meta-analysis may have its challenges, the more 
difficult part is to examine each one to determine whether it should be part of the analysis. 
This means that the analyst must specify inclusion criteria. For example, a well-formulated 
question will have a clearly specified target population (e.g., North American adults) and a 
well-specified methodology (e.g., clinical trials with a control and treatment group).

The number of possible inclusion criteria is extremely large, but these must be specified 
before the analysis is conducted. If a meta-analyst has a hypothesis about the effect under 
study (e.g., a hypothesis that psychotherapy is effective or ineffective), then it would obvi-
ously be a huge (unconscious) temptation to include only those studies that are consistent 
with the hypothesis. This can be a tricky point, because an important inclusion criterion 
might be the quality of the study. For example, one might judge a study to be of poor quality 
if data collection were sloppy or if it were not run double blind, meaning that neither the 
subjects nor researchers knew the experimental hypothesis. It is certainly easy to imagine 
the temptation to judge a study as low quality when its results conflict with one’s hypoth-
esis. In the study by Turner et al. (2008), some of the inclusion criteria were as follows:

From the FDA reviews of submitted clinical trials, we extracted efficacy data on all  
randomized, double-blind, placebo-controlled  studies of drugs for the short-
term treatment of depression. We included data pertaining only to dosages later 
approved as safe and effective; data pertaining to unapproved dosages were 
excluded. (p. 253)

As you can see, many choices made by the meta-analyst will determine which results are 
combined. Therefore, the meta-analyst must explain which databases were searched and 
which search terms were used, and must provide a list of inclusion criteria. The reader must 
be informed about what the inclusion criteria were, because he or she might disagree with 
these. Just as a paper in the primary literature has a method section that describes the study 
in sufficient detail to allow it to be replicated, the same is true for a meta-analysis. Without 
such information, the meta-analysis is of no value.

Coding Studies

Once studies have been selected, their results must be coded in two different ways. The first 
is to put the dependent variables onto a common scale (e.g., d or r), and the second is to code 
aspects of the study (e.g., participants, methods, materials) that might have a systematic 
effect on the study outcome. We discuss these in turn.

Coding the Dependent Variables

We’ve seen several times that standardized effect sizes are useful because they provide a 
common scale on which to express statistics arising from many different dependent vari-
ables. In Chapter 11, we saw how to convert t, F, and r2 to d. In Chapter 15, we saw how to 
convert the regression slope (b) to r, and in this chapter we saw how to convert a confidence 
interval to d.
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It is straightforward to transform many different measures to d or r when sufficient 
information has been presented to permit the transformation. Unfortunately, because of 
the dominance of significance testing, it has been common for researchers to report the 
result of a contrast as simply p > .05, which tells us only that the result was not statistically 
significant. In such situations, one may need to contact the authors of the original papers to 
try to retrieve this information.

Coding Moderating Variables

An important component of meta-analysis that has not been covered explicitly to this point 
involves the search for variables that affect the distribution of effect sizes in the literature. 
We saw an example of this in the Turner et al. (2008) study when they recorded (among 
other things) whether the study had been published or not. They found that the average 
effect size was larger in published studies than in unpublished studies. Variables that affect 
the distribution of effect sizes are called moderator variables. 

Smith and Glass (1977), in their classic meta-analysis of the effectiveness of psychother-
apy, recorded many variables that might function as moderators. For example, they recorded 
the type of therapy employed by the therapist, the number of years that the therapist had been 
practicing, the education level of the therapist, and many other variables. Some of these vari-
ables could have influenced the distribution of effect sizes. That is, one type of therapy might 
have proven more effective than others. If there had been large differences between the out-
comes for three treatment types, then we would have said that treatment type moderates the 
difference in outcomes between control and treatment conditions. Therefore, the meaning 
of the term “moderation” in meta-analysis is essentially the same as its meaning in multiple 
regression.

As it turned out, treatment type did not act as a moderator in this case. The estimated 
effect sizes for psychodynamic, desensitization, and behavior modification treatments of 
phobias were 0.92, 1.05, and 1.12, respectively. The estimated effect sizes for the treatment 
of neuroticism were 0.64, 0.52, and 0.85, respectively. In fact, very few of the other variables 
that Smith and Glass (1977) examined seemed to be systematically related to treatment out-
comes. They thus concluded the following:

Despite volumes devoted to the theoretical differences among different schools 
of psychotherapy, the results of research demonstrate negligible differences in the 
effects produced by different therapy types. Unconditional judgments of superior-
ity of one type or another of psychotherapy, and all that these claims imply about 
treatment and training policy, are unjustified. (Smith & Glass, 1977, p. 760)

It should be noted that subsequent meta-analyses suggest that cognitive behavioral therapy 
(CBT) is more effective than others in the treatment of anxiety disorders (Butler, Chapman, 
Forman, & Beck, 2006; Tolin, 2010).

The point here is not to draw conclusions about the effectiveness of psychotherapy. 
Rather, it is to note that the literature may (or may not) reveal that effect sizes depend 
on one or more moderator variables. Therefore, when coding studies to be included in a 
meta-analysis, one must also code the characteristics that distinguish the studies and which 
might explain the distribution of effect sizes in the literature.

Compute the Mean Effect Size and CI

We covered the calculation of mean effect sizes and confidence intervals in the preceding 
sections of this chapter. As noted, the method described is very similar to one proposed by 
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Hunter and Schmidt (1990), but the method of Hedges and Olkin (1985) is also widely used. 
Once again, this method is described in Appendix 22.3.

Interpret the Results

As with any research project, there are two kinds of questions that may be addressed. 
The first questions are those formulated at the outset of the analysis. For example, “How 
effective is psychotherapy?” or “How effective are antidepressants?” Such questions are 
answered by computing a confidence interval around the effect size of interest. As always, 
interpreting these results means being able to explain their importance in the context of 
the relevant research literature. No statistical rule can pronounce the results important or 
otherwise.

Other questions emerge in the course of analysis that were not formulated at the outset. 
For example, one might discover a moderating effect showing that one type of psychother-
apy is more effective for adolescents and another more effective for adults. This is the kind 
of discovery one may make anytime measurements are made. This is exactly what happens 
in the primary literature itself. A research question is formulated and an experiment is 
designed and run. The analysis of the experiment was established at the outset, but once 
data have been collected, there may be unexpected patterns in them. One could treat these 
as noise (random variations), or one might see important clues to why they arose.

In a lecture in 1854, French chemist Louis Pasteur remarked that “in the fields of obser-
vation, chance favors only the prepared mind.” By this, Pasteur meant that a serendipitous 
finding (a finding that one wasn’t explicitly looking for) will be recognized as important 
only if you have the necessary background knowledge (preparation). Of course, such results 
require verification, through either meta-analyses or further primary research. It is the dis-
covery of unexpected and meaningful patterns in data that drive new research questions and 
open up new lines of research.

SUMMARY

Meta-analysis provides a way to overcome the limita-
tions of individual studies by combining evidence from 
many different studies. In this chapter, we saw how to 
compute a confidence interval around a mean of sample 
means. We compute the confidence interval as follows:

M ± ta/2(sM ).

The most general way to compute M is as follows:

M w mi ii
k= ∑ = * ,1

where

 w n ni i ii
k= ∑ =/ 1

.

This method applies equally if sample sizes are the 
same or different. We compute S2 as

S w m M k
ki ii

k2 2
1

1
= −∑

−= ( ) ,

from which we obtain

s S
kM =
2

.

The random-effects model assumes that M esti-
mates μMeta, which is the mean of many population 
parameters; e.g., M may estimate the mean value 
of μ, the mean value of μ1 - μ2, the mean value of 
δ, or the mean value of r. The simplest version of 
the fixed-effects model assumes that M estimates a 
parameter (μ, μ1 - μ2, δ, or r) of a single population. 
The assumptions of the random-effects model are 
far more realistic than the assumptions of the fixed-
effects model.
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EXERCISES

*Exercises marked with an asterisk rely on material 
covered in appendices.

Definitions and Concepts

 1. What is the difference between primary and sec-
ondary literature?

 2. What is meta-analysis?
 3. What is a weighted sum?
 4. What is a meta-mean?
 5. What is the difference between the fixed-effects 

model and the random-effects model?

True or False

State whether the following statements are true or false.
 6. M can be used to estimate μ.
 7. M can be used to estimate μMeta.
 8. M is a biased statistic.
 9. If sample sizes differ, then S m M k

kii
k2 2
1

1
= −

−
∑ = ( ) .

10. If sample sizes differ, then M m kii
k= ∑ = ( )* / .1 1

Calculations

11. For the following numbers, compute the mean and 
variance in the usual way and as weighted sums. In 
each case, explain why the two means are the same 
or different.
(a) m = [10, 20, 50, 40, 30], n = [50, 40, 20, 10, 30]
(b) m = [10, 20, 50, 40, 30], n = [5, 5, 5, 5, 5]
(c) m = [16, 32, 64, 8, 128], n = [2, 2, 4, 8, 8]
(d) m = [16, 32, 64, 8, 128], n = [128, 64, 32, 16, 8]

12. For each part the preceding question, compute the 
95% confidence interval around M, taking sample 
size into account.

Scenarios

13. A researcher at an ophthalmology clinic reported 
in a journal article that 5% of male patients  

visiting his clinic had some sort of color deficiency 
(what many people incorrectly call color blind-
ness). A researcher at another ophthalmology clinic 
reported in a journal article that 8% of her male 
patients had some sort of color deficiency. Which 
of these papers contributed to the primary literature 
and which to the secondary literature?

14. A researcher examined a large number of research 
papers that tested the null hypothesis that the aver-
age digit span of university students was 7. She 
reported in a publication that 12 studies rejected 
the null hypothesis and 10 retained it. Is her publi-
cation part of the primary or secondary literature? 
Does her finding mean that the mean digit span of 
university students is 7?

15. If the fixed-effects model correctly describes the means 
submitted to a meta-analysis, then M will fall closer to 
μ, on average, than individual means. The 95% con-
fidence interval around M will be narrower, on aver-
age, than 95% confidence intervals around individual 
means. Why are these things true? Why is the term 
“on average” so important in these statements?

16. The primary visual cortex in the occipital lobe con-
tains mechanisms that are critical to visual perception. 
It is a very large brain region, although its size differs 
from person to person. The following table summa-
rizes mean area (in square centimeters) from seven 
published studies. Please perform a meta-analysis on 
these data by computing a point estimate and the 95% 
confidence interval around the point estimate.

i mi ni

1 45.37 5

2 95.72 2

3 81.02 5

4 66.41 9

5 51.56 6

6 72.24 8

7 86.86 3

KEY TERMS

fixed-effects model 11
meta-analysis 1
meta-mean (M) 2

primary literature 1
random-effects model 11

secondary literature 1
weighted sum 6
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17. In the past 2 years, pharmaceutical companies 
have commissioned 16 studies of low-density 
lipoprotein (LDL) cholesterol levels in the popu-
lation of North American adolescents. High levels 
of LDL are considered bad. The units used to mea-
sure LDL are mg/dL (milligrams per deciliter). Of 
these 16 studies, eight were published in medical 
journals.

(a) The mean LDL levels in the eight published 
studies are shown below, along with the 
number of participants in each study. Calculate 
M and the 95% confidence interval around 
M. (I recommend doing these calculations in 
Excel.)

i mi ni

1 135.19 27

2 146.95 38

3 132.04 30

4 134.48 28

5 132.56 41

6 128.62 34

7 131.35 34

8 124.83 25

(b) The following table shows the results of the 
eight studies that, for one reason or another, 
we not published. Calculate M and the 95% 
confidence interval around M.

i mi ni

9 112.64 53

10 117.93 51

11 116.40 33

12 123.38 38

13 119.28 45

14 109.35 30

15 117.98 46

16 122.28 38

(c)  Do you notice any differences in the results 
of your meta-analyses for the published and 
unpublished studies? Explain what these 
differences are and try to think of reasons that 
might explain them.

(d)  Calculate M and the 95% confidence interval 
around M for all 16 studies.

18. *If the fixed-effects model correctly describes the 
means submitted to a meta-analysis, what does 
S2 estimate? Please describe another way that the 
same quantity can be estimated.

19. *If the random-effects model correctly describes 
the means submitted to a meta-analysis, what does 
S2 estimate?

ANSWERS

Definitions and Concepts

 1. The primary literature comprises papers report-
ing original data, whereas the secondary literature 
comprises papers that combine results from the pri-
mary literature.

 2. Meta-analysis is a quantitative approach that com-
bines several results from the primary literature.

 3. A weighted sum is a sum of numbers that have been 
multiplied by a weight. The sum of all weights 
equals 1.

 4. The meta-mean (M) is a statistic that is the mean of 
a number of sample means.

 5. The fixed-effects model assumes that all sample 
means in a meta-analysis represent different random 
samples from the same distribution, whereas the ran-
dom-effects model does not make this assumption.

True or False

 6. True.

 7. True.
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 8. False. M is an unbiased estimate of μ or μMeta.

 9. True.

10. False. M m kii
k= ∑ = ( ) * /1 1  does not weight means 

according to sample size.

Calculations

11. (a) m = [10, 20, 50, 40, 30], n = [50, 40, 20, 10, 30].

 Simple mean = 30, simple variance = 250, weighted 
mean = 24, weighted variance = 230. The weighted 
mean is smaller because sample size is inversely related 
to the magnitude of the mean. That is, smaller values 
(e.g., 10) are associated with larger sample sizes.

Calculations: Question 11 (a)

i mi ni nimi ni(mi  - M)2

1 10 50 500 9800

2 20 40 800 640

3 50 20 1000 13520

4 40 10 400 2560

5 30 30 900 1080

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

150 3600 27600

Unweighted Weighted

M  30.0 24.00

S2 250.0 230.00

(b) m = [10, 20, 50, 40, 30], n = [5, 5, 5, 5, 5].

 Simple mean = 30, simple variance = 250, weighted 
mean = 30, weighted variance = 250. Because the 
sample sizes are the same, the weights applied in 
the case of the weighted sum are identical.

(c)  m = [16, 32, 64, 8, 128], n = [2, 2, 4, 8, 8].

 Simple mean = 49.6, simple variance = 2380.8, 
weighted mean = 60, weighted variance = 3340. 
The weighted mean is larger because sample size is 
directly related to the magnitude of the mean. The 
average of the two largest samples is 68 and the aver-
age of the two smallest samples is 24. Consequently, 
the weighted sum exceeds the simple average.

Calculations: Question 11 (c)

i mi ni nimi ni(mi  - M)2

1 16 2 32 3872

2 32 2 64 1568

3 64 4 256 64

4 8 8 64 21632

5 128 8 1024 36992

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

24 1440 64128

Unweighted Weighted

M 49.6 60.00

S2 2380.8 3340.00

(d)  m = [16, 32, 64, 8, 128], n = [128, 64, 32, 16, 8].

 Simple mean = 49.6, simple variance = 2380.8, 
weighted mean = 29.42, weighted variance = 
740.06. The weighted mean is smaller because 
sample size is inversely related to the magnitude 
of the mean. That is, smaller means (e.g., 16) are 
associated with larger sample sizes than are larger 
values (e.g., 128).

Calculations: Question 11 (b)

i mi ni nimi ni(mi  - M)2

1 10 5 50 2000

2 20 5 100 500

3 50 5 250 2000

4 40 5 200 500

5 30 5 150 0

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

25 750 5000

Unweighted Weighted

M  30.0  30.00

S2 250.0 250.00
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Calculations: Question 11 (d)

i mi ni nimi ni(mi  - M)2

1 16 128 2048 23050.12

2 32 64 2048 426.22

3 64 32 2048 38266.27

4   8 16 128 7340.62

5 128   8 1024 77745.15

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

248 7296 146828.39

Unweighted Weighted

M 49.6 29.42

S2 2380.8 740.06

12. For each part of the preceding question, compute 
the 95% confidence interval around M, taking sam-
ple size into account.
(a)  M = 24, S2 = 230, sM = 6.78, ta/2 = 2.776, 

95% CI = [5.17, 42.83].
(b)  M = 30, S2 = 250, sM = 7.07, ta/2 = 2.776, 

95% CI = [10.37, 49.63].
(c)  M = 60, S2 = 3340, sM = 28.85, ta/2 = 2.776, 

95% CI = [-11.75, 131.75].
(d)  M = 29.42, S2 = 740.06, sM = 12.17, ta/2 = 2.776, 

95% CI = [-4.35, 63.19].

Scenarios

13. Both papers contribute to the primary literature 
because both present original data.

14. It is part of the secondary literature because it com-
bines the results of studies in the primary literature. 
Her finding does not mean that the mean digit span 
of university students is 7. The mean digit span of 
university students would be better estimated from 
a meta-analysis of the 22 means reported in the 
studies reviewed.

15. Ultimately, M is based on more scores than any 
individual m. Statistics based on larger numbers 
(e.g., M) have a smaller sampling error, meaning 
that, on average, they fall closer to the parameter 
(μ in this case) than statistics based on smaller 
samples (e.g., m). Similarly, the standard errors 
associated with large samples are smaller than 

the standard errors associated with small samples. 
Therefore, M falls closer to μ on average than m. 
For the same reason, confidence intervals will be 
narrower. The term “on average” is important here 
because it’s possible for a given m to fall closer to 
μ than a given M.

16. The table below shows the calculation of M  
and S 2.

i mi ni nimi ni(mi - M)2

1 45.37  5  227 2471.68

2 95.72  2  191 1581.05

3 81.02  5  405 899.99

4 66.41  9  598 12.82

5 51.56  6  309 1544.40

6 72.24  8  578 171.96

7 86.86  3  261 1112.42

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

38 2569 7794.33

Weighted

M  67.60

S2 239.30

To compute the confidence interval, we first com-
pute sM, which can be computed in one step as

s S
kM = = =
2

7
5 847239.3 . .

Because there are 7 - 1 = 6 degrees of freedom, ta/2 
= 2.447. The confidence interval can now be computed 
as

CI  = M ± ta/2(sM) = 67.6 ± 2.447(5.847)  
= [53.29, 81.91].

17. (a)  The table shows the calculation of M and S2.

 To compute the confidence interval, we first com-
pute sM, which can be computed in one step as

s S
kM = = =
2

8
2 34844.10 . .
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Calculations: Question 17 (a)

i mi ni nimi ni(mi  - M)2

1 135.19  27 3650 61.63

2 146.95  38 5584 6692.32

3 132.04  30 3961 80.61

4 134.48  28 3765 17.95

5 132.56  41 5435 51.36

6 128.62  34 4373 870.25

7 131.35  34 4466 184.46

8 124.83  25 3121 1957.72

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

257 34356 9916.30

Weighted

M 133.68

S2  44.10

 Because there are 8 - 1 = 7 degrees of freedom, 
ta/2 = 2.365. The confidence interval can now be 
computed as

CI  = M ± ta/2(sM  ) = 133.68 ± 2.365(2.348)  
= [128.13, 139.23].

(b)  The table shows the calculation of M and S 2.

 To compute the confidence interval, we first com-
pute sM, which can be computed in one step as

s S
kM = = =
2

8
1 55219.26 . .

 Because there are 8 – 1 = 7 degrees of freedom, 
ta/2 = 2.365. The confidence interval can now be 
computed as

CI  = M ± ta/2(sM) = 117.47 ± 2.365(1.552)  
= [113.80, 121.14].

Calculations: Question 17 (b)

i mi ni nimi ni(mi  - M)2

 9 112.64 53 5970 1237.70

10 117.93 51 6014 10.68

11 116.40 33 3841 37.96

12 123.38 38 4688 1326.15

13 119.28 45 5368 147.02

14 109.35 30 3281 1979.24

15 117.98 46 5427 11.85

16 122.28 38 4647 878.26

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

334 39236 5628.86

Weighted

M 117.47

S2  19.26

(c) Yes. The mean of the published studies (M = 
133.68) is greater than the mean of the un-
published studies (M = 117.47). Perhaps these 
hypothetical pharmaceutical companies would 
like the evidence to show that the average LDL 
level is greater than it is.

(d) The table shows the calculation of M and S 2.

Calculations: Question 17 (d)

i mi ni nimi ni(mi  - M)2

1 135.19 27 3650 3073.87

2 146.95 38 5584 19117.84

3 132.04 30 3961 1696.47

4 134.48 28 3765 2777.60

5 132.56 41 5435 2650.25

6 128.62 34 4373 571.52

 7 131.35 34 4466 1586.02

 8 124.83 25 3121 2.40

 9 112.64 53 5970 7480.23

(Continued)
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Calculations: Question 17 (d)

i mi ni nimi ni(mi  - M)2

10 117.93 51 6014 2214.89

11 116.40 33 3841 2175.88

12 123.38 38 4688 49.39

13 119.28 45 5368 1235.63

14 109.35 30 3281 6903.94

15 117.98 46 5427 1967.54

16 122.28 38 4647 190.68

∑ −i
k

in1 ∑ −i
k

i in m1 ∑ −−i
k

i in m M1
2( )

591 73591 53694.17

Weighted

M 124.52

S2  96.91

 To compute the confidence interval, we first com-
pute sM, which can be computed in one step as

s S
kM = = =
2

16
2 46196.91 . .

 Because there are 16 – 1 = 15 degrees of freedom, 
ta/2 = 2.131. The confidence interval can now be 
computed as

CI  = M ± ta/2(sM) = 12.52 ± 2.131(2.461)  
= [119.27, 129.77].

18. If the fixed-effects model correctly describes the 
situation, then the variance among the sample 
means is an estimate of the variance of the distri-
bution of means (sm

2 ).

19. *If the random-effects model correctly describes the 
means submitted to a meta-analysis, what does S2 esti-
mate? If the random-effects model correctly describes 
the situation, then S2 estimates ( ) ,σ σMeta /2 2+ w n  where 
s
Meta

2  is the variance of the population means, sm
2  is 

the average of all population variances, and n is the 
size of the individual samples.

APPENDIX 22.1: THE PARAMETERS ESTIMATED BY S2

In Chapter 22, we did not discuss what S2 estimates 
because doing so would have broken the flow of our dis-
cussion. We can now address this question. The answer 
depends on whether the fixed- or random-effects model 
correctly describes the nature of the population(s) 
involved. To simplify this discussion, we will make 
two assumptions: (i) we will assume that in all cases, 
distributions of scores have the same variance (σ2); and 
(ii) we will assume that all samples involve the same 
number of scores (n). With these assumptions, we can 
compute S2 more simply as

S
m M
k
ii

k
2

2
1

1
=

−∑
−

= ( )
(22.A1.1)

Let’s first assume that the fixed-effects model correctly 
describes the population of scores under study. If this is 
so, then all samples have been drawn from exactly the 
same population of scores. In this case, S2 estimates the 
variance of the distribution of means, sm

2 . This might 
not seem obvious, so let’s step through the logic.

Figure 22.A1.1a shows a distribution of scores that 
has a mean of μ = 48 and variance of σ2 = 64. Figure 
22.A1.1b shows the sampling distribution of the mean 
for sample size n. (Remember, we’re assuming that all 
samples are the same size.) The variance of this distri-
bution of means is, as always, sm

2  = s2/n.
A meta-analysis assumes that k means have been 

drawn from the distribution of means. So, just as we 
can draw n scores from the left distribution and com-
pute s2 to estimate σ2, we can draw k means from the 
center distribution and compute the variance among 
the means (S2) to estimate sm

2 . Therefore, the variance 
among the sample means is an estimate of the variance 
of the distribution of means. That is, when the fixed-
effects model is correct, S2 estimates sm

2 .
Let’s now assume that the random-effects model 

correctly describes the populations of scores under 
study. This situation is a little more complex but can 
be understood by referring back to Figure 22.2. Figure 
22.2 shows that under the random-effects model, we 
imagine a very large number of populations of scores, 

(Continued)
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each of which has a different mean, μi. The distribution 
of these population means has a mean (μMeta) and vari-
ance (s

Meta

2 ). We continue to assume that each distribu-
tion of scores has the same variance, σ2. In a meta-analysis, 
we have selected k of these populations at random and 
drawn a sample of size n from each one; from these k 
samples, we computed k sample means. (M is computed 
from these k sample means.)

If the random-effects model is correct, then there 
are two contributions to the variability among sample 
means. One source is the variance within distributions  
(sm

2 ) and the other is the variance between the distribu-
tion means (sMeta

2 ). As a consequence, the variance of 
the distribution of means would be

σ σm
2 2+

Meta
, (22.A1.2)

which is to say that S2 now estimates σ σm
2 2+

Meta . (The 
variance of the distribution of M would be

σ
σ σ

M
m

k
2

2 2

=
+

Meta ,

but that’s not our current focus.)
Is it possible to determine whether the fixed or 

random-effects model correctly describes the means 
that have been combined? The answer is yes, and I will 
sketch out a simplified explanation. The important point 
is that if s

Meta

2  = 0, then the fixed-effects model is cor-
rect. In this case, there is only one source of variance 
contributing to the distribution of M. That is, if sMeta

2  = 

0, then equation 22.A1.2 reduces to sm
2 . Therefore, when 

s
Meta

2  = 0, equation 22.A1.1 estimates sm
2 .

Now, a second way to estimate sm
2  involves the aver-

age sample variance, as follows:

s
s
k

ii
k

2

2

1= ∑ =
. (22.A1.3)

In equation 22.A1.3, the mean sample variance is called 
s 2 . The line over s indicates that this is the mean and 
distinguishes it from the sample variance used every-
where else in the book. This new quantity (s 2) esti-
mates σ2, which is the variance common to all distribu-
tions of scores. Therefore, if the fixed-effects model is 
correct ( s

Meta

2  = 0), then s n2/  estimates σ2/n = sm
2 .

We now have two ways to estimate sm
2 . If s

Meta

2  = 
0, we would expect the ratio of these two quantities to 
be close to 1, on average. That is,

S
s n

2

2
/

should be close to 1. However, if sMeta
2  > 0, then this ratio 

should be greater than 1. One could use a significance 
test to determine whether the ratio is larger than would 
be expected by chance on the assumption that s

Meta

2  = 0.
It’s not clear what value there is in testing whether 

s
Meta

2  = 0, per se. If we had a multimodal distribution of 
our effect size (e.g., d or r), then this might suggest the 
existence of a moderating variable. However, evidence 
that sMeta

2  > 0 is not in itself evidence of a moderating 
variable.

24

(a) (b) (c)

32 40 48 56 64 72

D
en

si
ty

Scores

 σ2 = 64

24 32 40 48 56 64 72
Age (months)

Means

 σ2
m

 = σ2/n

24 32 40 48 56 64 72

Means of Means

 σ2
M

 = σ2
m

/k

FIGURE 22.A1.1 ■ The Fixed Effects Model

The distributions underlying the fixed-effects model of meta-analysis. Scores (a), means (b), and means of means (c). See the 
text for further details.
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APPENDIX 22.2: USING EXCEL TO CONDUCT A META-ANALYSIS

FIGURE 22.A2.1 ■ Meta-Analysis in Excel

These data are taken from Table 22.6. The effect sizes from 
eight studies are given in column A and the sample sizes are 
given in column B. The analysis is described in the text. 

APPENDIX 22.3: AN ALTERNATIVE APPROACH TO META-ANALYSIS

In Chapter 22, we described a method of meta-analysis 
closely linked to that described by Hunter and Schmidt 
(1990). In this case, the mean and the variance of the 
means (or other statistics) are computed as weighted 
sums. The alternative method proposed by Hedges and 
Olkin (1985) also computes the mean of means as a 
weighted sum but includes the sample variance as part 
of the weight. We will first describe the Hedges and 
Olkin fixed-effects model for estimating μ, and then 
the random-effects model for estimating μMeta. We will 
then describe how the random-effects model is used to 
estimate μ1 - μ2, δ, and r. Finally, a few things will be 
said about the relative merits of the Hunter-Schmidt and 
Hedges-Olkin models.

Fixed-Effects Meta-Analysis for μ

In the Hedges-Olkin fixed-effects model, the meta-
mean, M, is computed as a weighted sum, as before:

M
wm
w
i ii

k

ii
k= ∑

∑
=

=

1

1

. (22.A3.1)

In contrast to what we used in Chapter 22, the weights 
are defined as follows:

w
s ni
i i

=
1

2
/
. (22.A3.2a)

Equation 22.A3.2a can also be written as

w
n
si
i

i

=
2
. (22.A3.2b)

In equation 22.A3.2a, si
2 is the variance associated 

with mi and ni is the sample associated with mi. The 
denominator of equation 22.A3.2a, s ni i

2
/ , is the squared 

The data in Figure 22.A2.1 have been taken from Table 
22.6. The effect sizes and sample sizes from eight 
studies are given in rows 1 to 8 of columns A and B, 
respectively. To compute M as a weighted sum, we first 
 multiply effect sizes by sample sizes in rows 1 to 8 of 
column C. The sum of these products is divided by the 
sum of all sample sizes in cell B13 to yield M.

To compute S2 as a weighted sum, we first multi-
ply sample sizes by the squared deviations of the effect 
sizes from M [i.e., ni (di - M)2] in rows 1 to 8 of column 
E. S2 is the sum of these squared deviations divided by 
the total number of scores (N, shown in cell B12) and 
then corrected for bias by multiplying k/(k-1). The 
result is shown in cell B16.

The estimated standard error of M is computed in 
cell B17 as sM = S k2/ . The T.INV function is used in cell 
B18 to compute tα/2, where α is .05. Finally, the lower 
and upper limits of the confidence interval are com-
puted in cells B20 and B21, respectively.
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TABLE 22.A3.1 ■ Fixed-Effects Meta-Analysis

i mi s2
i ni wi wimi

1 48.6 40.3 20 0.496 24.119

2 47.8 53.4 60 1.124 53.708

3 47.0 65.8 30 0.456 21.429

4 49.1 48.1 40 0.832 40.832

5 44.8 102.7 20 0.195 8.724

6 48.7 43.0 10 0.233 11.326

7 44.8 25.5 10 0.392 17.569

8 49.1 109.7 10 0.091 4.476

wii
k
−∑ 1 w mii

k
i=∑ 1

3.818 182.182

estimated standard error for the mean for mi, i.e., smi
2 .  

Equation 22.A3.2b makes clear that wi will increase 
as si

2 decreases and ni increases. The logic here is to 
give greater weight to large samples and samples with 
smaller variance; samples with small variance are 
assumed to be more precise estimates of μ.

The estimated standard error of M is

s
wM
ii

k=
∑ −

1

1

. (22.A3.3)

When the si
2 are small and the ni are large, then the  

sum of wi (i.e., wii
k
−∑ 1 ) will be large, and its recipro-

cal (equation 22.A3.3) will be small. Conversely, 
when the si

2 are large and the ni are small, the sum of wi  
(i.e., wii

k
−∑ 1 ) will be small and its reciprocal will be 

large. In general, there will be a mixture of large and 
small wi. From M and sM, a 95% confidence interval is 
computed as

CI = M ± 1.96(sM  ). (22.A3.4)

The data in Table 22.A3.1 show eight sample means 
and variances and their associated sample sizes. All 
samples were drawn from a normal population with μ 
= 48 and σ = 8. Because all samples were drawn from 
the same distribution, the fixed-effects model applies 
to these data. Table 22.A3.1 also shows the quanti-
ties required for the calculation of a confidence inter-
val around M using equations 22.A3.1 to 22.A3.4. For 
example, the weight associated with m1 is

w
s n1

1

2

1

1 1

40 3 20
0 496= = =

/ . /
. ,

which when multiplied by the sample mean yields

w1m1 = 0.496 * 48.6 = 24.119.

When the weights are calculated for each of the eight 
sample means, M is computed as follows:

M
wm
w
i ii

k

ii
k= ∑

∑
= ==

=

1

1

182 182
3 818

47 72.
.

. .

Using equation 22.A3.3, we compute sM as follows:

s
wM
ii

k=
∑

= =
−

1 1
3 818

0 51
1 .

. .

Using equation 22.A3.4, we find that the 95% confi-
dence interval around M is

CI  = M ± 1.96(sM  ) = 47.72 ± 1.96(0.51)  
= [46.72, 48.72].

We have 95% confidence that this interval contains the 
population mean, μ.

Random-Effects Meta-Analysis for μ

The random-effects model assumes that scores are 
drawn from populations with different means. Let’s 
assume that these population means are normally dis-
tributed with μMeta = 48 (as before) and σMeta = 5. For 
simplicity, we will further assume that each popula-
tion of scores has the same standard deviation, σ = 8. 
Imagine choosing eight of these populations at random 
and drawing a random sample from each one. The num-
ber of scores in each sample is shown in column ni of 
Table 22.A3.2. To the left of the samples sizes are the 
sample means (mi  ) and variances ( si

2 ).
Although it’s not appropriate, we could use the 

data in Table 22.A3.2 to compute a confidence interval 
around M for a fixed-effects model just as we did in the 
preceding section. Doing so, we find that

M
wm
w
i ii

k

ii
k= ∑

∑
= ==

=

1

1

175 303
3 583

49 93.
.

.
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and

s
wM
ii

k=
∑

= =
−

1 1
3 583

0 53
1 .

. .

From this, we find the 95% confidence interval to be

CI  = M ± 1.96(sM ) = 49.93 ± 1.96(0.53)  
= [48.89, 50.97].

Of course, this confidence interval is inappropriate 
because it assumes the fixed-effects model. As a con-
sequence, sM (equation 22.A3.3) is based on the sample 
variances only. This means that sM does not include 
variability attributable to σMeta, as would be needed for 
the random-effects model.

Equations 22.A3.1 to 22.A3.4 can be modified to 
include an estimate of the variability attributable to 
the population means (s

Meta

2 ), in addition to the vari-
ability within populations (σ). Equation 22.A3.5 shows 
that the weights in the random-effects model add the 
term s

Meta

2  to the weights of the fixed-effects model as 
follows:

w
s n si
i i

*
.=

+
1

2 2
/

Meta

(22.A3.5)

In this case, s
Meta

2  is an estimate of s
Meta

2  (Hedges, 
1992). (Make sure you see how equation 22.A3.5 relates 
to equation 22.A3.2a.) These new weights are used to 
compute M*,

M
w m
w
i ii

k

ii
k

*

*

*
,= ∑

∑
=

=

1

1

(22.A3.6)

and sM
*
,

s
wM
ii

k
*

*
.=

∑ −

1

1

(22.A3.7)

sM
*  is the estimated standard error of M* that includes 

an estimate of s
Meta

2 . In equations 22.A3.5, 22.A3.6, and 
22.A3.7, the asterisk (*) indicates the random effects 
model and is used to distinguish the weights, M, and 
standard error in the fixed-effects model from the cor-
responding quantities in the random-effects model.

The calculation of s
Meta

2  is the new part here. It 
involves first computing the weighted sum of squared 
deviations of the sample means from M using the 
weights of the fixed-effects model as follows:

Q w m Mi ii
k= −∑ = ( ) .21 (22.A3.8a)

TABLE 22.A3.2 ■ Random-Effects Meta-Analysis for Sample Means From Eight Studies

i mi s2
i ni wi wimi wi m

2
i w2

i w*
i w*

i  m
2
i

1 50.0 38.0 20  0.526 26.316 1315.789 0.277 0.049  2.428

2 41.9 67.7 60  0.886 37.134 1555.932 0.785 0.050  2.113

3 50.8 48.9 30  0.613 31.166 1583.215 0.376 0.049  2.499

4 52.0 60.9 40  0.657 34.154 1776.026 0.431 0.049  2.572

5 49.5 63.5 20  0.315 15.591  771.732 0.099 0.046  2.263

6 52.7 35.7 10  0.280 14.762  777.952 0.078 0.045  2.367

7 55.1 78.2 10  0.128 7.046  388.237 0.016 0.038  2.078

8 51.7 56.6 10  0.177 9.134  472.242 0.031 0.041  2.123

wii
k
=∑ 1 w mi ii

k
=∑ 1 w mi ii

k 2
1=∑ wii

k 2
1=∑ wii

k *
=∑ 1 w mii

k
i

*
=∑ 1

 3.583 175.303 8641.126 2.095 0.367 18.442

M Q c s2
Meta sM

* M*

48.933 63.046 2.998 18.697 1.651 50.246
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A computational shortcut is to compute

Q wm
wm
wi ii

k i ii
k

ii
k= ∑ −

∑( )
∑

=
=

=

2

1

1

2

1

. (22.A3.8b)

To compute s
Meta

2 , we use the following formula:

s Q df
cMeta

2 =
− (22.A3.9)

where

c w
w
wii

k ii
k

ii
k= ∑ − ∑

∑
=

=

=
1

2

1

1

, (22.A3.10)

and df = k-1.
When s

Meta

2  is 0 or very small, sampling error 
makes it possible for equation 22.A3.9 to yield a neg-
ative value for s

Meta

2 . Of course, this makes no sense 
because a variance cannot be negative. Therefore, if 
equation 22.A3.9 produces a negative s

Meta

2 , we simply 
set sMeta

2  = 0. (Note: Q and c are arbitrary symbols typi-
cally used in descriptions of the Hedges-Olkin model.)

Although there a several steps required to compute 
s
Meta

2 , equations 22.A3.8b and 22.A3.10 show that most 
of the quantities are relatively easy to compute from 
information shown in Table 22.A3.2. First,

mi
k= ∑ =

2

1
Q w

wm
wi i
i ii

k

ii
k−

∑( )
∑

= −

=

=

=

1

2

1

2

8641 126
175 303

3 583

63

.
.

.

.. .046

Second,

c w
w
wii

k ii
k

ii
k= ∑ − ∑

∑
= − ==

=

=
1

2
1

1
3 583 2 095

3 583
2 998. .

.
. .

 

Finally,

s Q df
cMeta

2 63 046 7

2 998
= 18.697=

−
=

−.

.
.

Once s
Meta

2  has been computed, the random-effects 
weights wi

* are computed. These are shown in the sec-
ond to last column of Table 22.A3.2, and the weighted 
means (wi

*mi ) are shown in the last column. From these 
weighted means, we find that

M
w m
w
i ii

k

ii
k

*

*

*

.

.
. ,= ∑

∑
= ==

=

1

1

18 442

0 367
50 246

and

s
wM
ii

k
*

*
.

. .=
∑

= =
−

1 1

0 367
1 651

1

Using M* and sM
* , we can compute

CI  = M* ± 1.96(sM
* ) = 50.246 ± 1.96(1.651)  

= [47.01, 53.48].

We saw earlier that applying the fixed-effects cal-
culations to the data in Table 22.A3.2 produced a 95%  
confidence interval of 49.93 ± 1.96(0.53), whereas we’ve 
just seen that the random-effects model produces a 95% 
confidence interval of 50.25 ± 1.96(1.65). Therefore, 
M* > M and sM

* > sM. The fact that sM
*

 > sM makes sense 
because sM

*  was computed using equation 22.A3.7 and 
includes an estimate of s

Meta

2 . Clearly the fixed-effects 
model in this case produces a confidence interval that is 
narrower than it should be.

The fact that M* > M is not immediately obvious, 
but looking at columns wi and wi

* provides an expla-
nation. Column wi shows weights [w s ni i i=1 2/ ( )/ ] 
that are highly variable because both sample sizes and 
sample variances are highly variable. By contrast, col-
umn wi

*  shows weights [w s n si i i
* /( )= +1 2 2/ Meta ] that are 

more homogeneous. The reason is that s
Meta

2  is greater 
than s ni i

2
/ , making wi

* more dependent on s
Meta

2  than 
s ni i
2
/ . Because of the homogeneity of w*

i, M* = 50.246 
is closer to the simple mean of means (50.46) than  
M = 49.93.

Fixed- and Random-Effects  
Meta-Analysis for μ1 – μ2, δ, and r

The Hedges (1992) approach to meta-analysis can be 
used to perform meta-analyses to estimate many other 
parameters including μ1 - μ2, δ, and r. The only differ-
ence in these cases is the quantity used to compute the 
weights. In the case of a simple mean described above, 
wi was defined as w s ni i i=1 2/( )/ . As noted earlier, s ni i

2
/  

is the square of the estimated standard error of mi. 
Therefore, the square of the estimated standard error is 
used to compute wi for all other statistics

Weights for Estimating μ1 – μ2

When we perform a fixed-effects meta-analysis for  
the difference between two population means, we 
assume the existence of many pairs of population 
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means (μ1 - μ2 ), and for each there is a statistic is m1 
- m2 to estimate this difference. Each m1 - m2 is asso-
ciated with an estimate of the variance of its sampling 
distribution; i.e.,

s
s
n

s
nm m

i

i

i

i
1 2

2

2

1

2

2

− = +pooled pooled
.

For the fixed-effects meta-analysis, the weights are

w
s
n

s
n

i
i

i

i

i

=

+

1
2

1

2

2

pooled pooled

.
(22.A3.11)

The random-effects weights are

w
s
n

s
n

s
i

i

i

i

i

* ,=

+ +

1
2

1

2

2

2pooled pooled

Meta

(22.A3.12)

where s
Meta

2  estimates the variance among the popula-
tion μ1 - μ2. s

Meta

2  is computed as in equation 22.A3.9. 
The estimated standard error (sM ) is computed as in 
equation 22.A3.7.

Weights for Estimating δ

When we perform a meta-analysis for the standardized 
difference between two population means (δ), the sta-
tistic d is computed for many pairs of means. Each di is 
associated with an estimate of the variance of its sam-
pling distribution; i.e.,

s
d
df n nd
i

i
i

i i

2

2

1 2
2

1 1
= + + .

For the fixed-effects meta-analysis, the weights are

w
d
df n n

i

i

i

i i

=

+ +

1

2

1 1
2

1 2

.

(22.A3.13)

For the random-effects meta-analysis, the weights are

w
d
df n n

s
i

i

i

i i

*
,=

+ + +

1

2

1 1
2

1 2

2

Meta

(22.A3.14)

where s
Meta

2  estimates the variance among the popula-
tion δi. s

Meta

2  is computed as in equation 22.A3.9. The 
estimated standard error (sM ) is computed as in equa-
tion 22.A3.7.

Weights for Estimating r

When we perform a meta-analysis for the population 
correlation coefficient (r), the Fisher transform is used 
to first convert sample correlation coefficients to zri

; see 
Chapter 15. For each zri

, the associated variance is

σzri n
2 1

3
=

−
. (22.A3.15)

For the fixed-effects meta-analysis, the weights are

w

n

ni =

−

= −
1
1
3

3.
(22.A3.16)

For the random-effects meta-analysis, the weights are

w

n
s

i
* =

−
+

1

1

3

2

Meta

(22.A3.17)

where s
Meta

2  estimates the variance among the popula-
tion ρi. s

Meta

2  is computed as in equation 22.A3.9. The 
estimated standard error ( sM

* ) is computed as in equa-
tion 22.A3.7. Once the meta-analysis is performed on 
the zri  values, the point estimate and confidence lim-
its are transformed back to r values using the inverse 
Fisher transform.

Which Method to Use?

Many researchers have wondered about which method 
of meta-analysis is more accurate. This question arises 
because neither model is perfect in the sense that nei-
ther guarantees that nominal 95% confidence intervals 
will capture the parameter of interest exactly 95% of 
the time.

When we compute M* ± 1.96(sM
* ), for example, we 

say that our nominal confidence level is 95%, which 
means that 95% of all intervals computed this way 
should capture the population parameter under ideal 
conditions. However, the percentage of intervals that 
actually capture the parameter of interest is called 
the empirical coverage. Because of the complexity of 
meta-analysis, the empirical coverage is not guaranteed 
to match the nominal confidence.
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To illustrate this distinction, I can use a computer to 
simulate the circumstances that gave rise to the data in 
Table 22.A3.2. That is, I can draw eight samples of size 
20, 60, 30, 40, 20, 10, 10, and 10 from populations, each 
of which has a standard deviation of σ = 10. The means 
of these eight populations are randomly drawn from a 
normal distribution with μMeta = 48 and σMeta = 5. Each 
selection of eight samples is a sampling experiment. 
For each sampling experiment, I can compute a nomi-
nal 95% confidence interval around M (computed with 
the Hunter-Schmidt method) or M* (computed with the 
Hedges-Olkin method).

The question is, what proportion of times will these 
two confidence intervals capture μMeta = 48? To answer 
this question, I repeated the above sampling experiment 
1,000,000 times and for each sample I computed M and 
M*. I found that the Hunter-Schmidt method captures 
μMeta 90.9% of the time and the Hedges-Olkin method 
captures μMeta 92.3% of the time. Therefore, the empiri-
cal coverage in these two cases is 90.9 and 92.3. In  
neither case does the empirical coverage equal the 
nominal confidence of 95%.

These results might suggest that the Hedges-Olkin 
method does better than the Hunter-Schmidt method. 
However, there are many possible variations on the situ-
ation we’ve been considering. Rather than eight sam-
ples of size 20, 60, 30, 40, 20, 10, 10, and 10, we could 
consider 32 samples with sizes randomly drawn from a 
normal distribution of sizes with mean 30 and standard 
deviation 12. In this case, I find that the Hunter-Schmidt 
method captures μMeta 93.7% of the time and the Hedges-
Olkin method captures μMeta 92.5% of the time. When 
there are 32 samples with sizes randomly drawn from a 
normal distribution of sample sizes with mean 100 and 
standard deviation 12, the empirical coverage for the 
Hunter-Schmidt method is 95% and the empirical cover-
age for the Hedges-Olkin method is 92.2%.

You should be able to see the enormous range of pos-
sible variations that must be considered when comparing 
the two methods. For example, one has to consider (i) the 
number of samples, (ii) the sample sizes, (iii) the values 
of σ and μMeta, (iv) whether all σ are equal, and (v) the 
parameter being estimated (μ1 - μ2, δ, and r, just to name 
a few). Comparing these methods is an ongoing area of 
research, and not all studies agree with each other (see, 

for example, Field, 2005, versus Hafdahl & Williams, 
2009). However, my sense is that the Hunter-Schmidt 
method described in Chapter 22 generally works at least 
as well as the Hedges-Olkin model. For example, Table 6 
in Hafdahl and Williams (2009) shows that in most cases 
the Hunter-Schmidt method produces empirical cover-
age that is at least as good as or better than the Hedges-
Olkin model when the parameter being estimated is r.
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