
1

APPENDIX 2.3: RULES OF PROBABILITY

The frequentist notion of probability is quite simple and 
intuitive. Here, we’ll describe some rules that govern 
how probabilities are combined. Not all of these rules 
will be relevant to the rest of this book. However, 
describing these will help to make sure that we are 
using the concepts of probability correctly as we move 
on to more advanced topics.

We will begin with some notation. We can denote 
the probability of a flipped coin coming up heads as 
p(heads) = .5 and the probability of it coming up tails as 
p(tails) = .5. Or we can say that the probability of a rolled 
die coming up 1 is p(1) = .1667 and the probability of it 
coming up 3 is p(3) = .1667. However, we want to think 
about the general case of outcomes and events, not just 
those associated with coin flips or die rolls. Therefore, we 
will use letters to define arbitrary events. For example, 
we can use A, B, and C to denote three different events, 
no matter what variable we might be considering.

The OR Rule for Mutually Exclusive  
Events: p(A or B) = p(A) + p(B)

A critical concept for us is the probability of A or B 
occurring. We’ve seen this question before, but now 
we can provide a bit more detail about how this is com-
puted and what assumptions must be true for our calcu-
lation to be valid.

Events are mutually exclusive if they cannot co-occur. 
For example, a flipped coin can come up heads or tails, but 
not both. Therefore, the possible outcomes of a coin flip 
are mutually exclusive. Similarly, a rolled die can be one, 
and only one, of the following: 1, 2, 3, 4, 5, or 6. Therefore, 
these are mutually exclusive events. When we draw cards 
from a deck, the four suits are mutually exclusive. A drawn 
card can be a heart, but it can’t simultaneously be a spade.

When events A and B are mutually exclusive, the 
probability of A or B occurring is the sum of their 
separate probabilities:

p(A or B) = p(A) + p(B). (2.A3.1)

For example, if A and B are heads and tails, respectively, 
then the probability of a flipped coin being either a head 
(A) or a tail (B) is

p(A or B) = p(A) + p(B) = .5 + .5 = 1.

If we consider the role of a die, and A and B are 4 and 6, 
respectively, then the probability of a rolled die coming 
up 4 or 6 is
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Or if we consider the role of a die and A, B, and C are 1, 
4, and 6, respectively, then the probability of a rolled die 
coming up 1 or 4 or 6 is
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The OR rule is the most important rule of probability 
for much of what follows in subsequent chapters.

The AND Rule for Independent  
Events: p(A and B) = p(A)p(B)

Two events (or outcomes) are independent if the occur-
rence of one does not affect the probability that the other will 
occur. For example, if two coins are flipped, the outcomes 
are independent. In other words, if one coin comes up heads, 
it has no effect on whether the other coin will come up heads. 
Or if the same coin is flipped twice, coming up heads on 
the first flip has no effect on the probability of it coming up 
heads on the second flip. Each time a coin is flipped, the out-
come is independent of the outcomes of all previous flips.

When events A and B are independent, the 
probability of A and B occurring is the product of their 
separate probabilities:

p(A and B) = p(A) p(B). (2.A3.2)

For example, if A and B are heads and tails, respectively, 
then the probability of flipping a coin twice and getting a 
head (A) on the first flip and a head (B) on the second flip is

p A B p A p B( ) ( ) ( ) (. )(. ) . .and = = 
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Notice that each of the following events has the same 
probability of occurrence: (head and tail), (head and 
head), (tail and tail), and (tail and head). These are 
the four possible outcomes for two flips of a coin, and 
each has a probability of .25. The sum of these four 
probabilities is 1, because no other outcomes are possible. 
In this example, we’ve considered two successive flips of 
the same coin, but the result would be exactly the same if 
we considered flipping two coins simultaneously.

The OR Rule for Events That Are Not Mutually 
Exclusive: p(A or B) = p(A) + p(B) - p(A)p(B)

Some events are not mutually exclusive. For example, 
a card drawn from a deck can be both a Heart and a 
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King. A student can be both female and in psychology. A  
person can be both anxious and depressed. When events are 
not mutually exclusive, the OR rule is modified as follows:

p(A or B) = p(A) + p(B) - p(A) p(B). (2.A3.3)

Equation 2.A3.3 differs from equation 2.A3.1 only in 
the last term, p(A)p(B), which denotes the probability of 
both A and B occurring.

Let’s consider drawing a card from a 52-card 
deck that has four suits (Clubs, Spades, Hearts, and 
Diamonds) and 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
Jack, Queen, and King). If event A is “drawing a red 
card” and event B is “drawing a King,” then we can ask 
about the probability of A or B. These events are not 
mutually exclusive. If you draw a red card, it could be 
a King. Conversely, if you draw a King, it could be red. 
Figure 2.A3.1 shows a full deck of playing cards to help 
us think about this question. The bottom two rows show 
all the red cards; diamonds and hearts. These represent 
half the deck, so the probability of drawing a red card 
is p(A) = .5. The right column shows the four Kings. 
Because four of the 52 cards are Kings, the probability 
of drawing a King is p(A) = 4/52 = 1/13 = .07692. 
Because A and B are not mutually exclusive, we have 
to take into account the probability that a card is both 
red and a King. The probability of being red and being 
a King is
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Another way to say this is that red Kings compose 
1/26th of the deck.

Equation 2.A3.3 tells us that we should do the 
following to calculate the probability of drawing a card 
that is red or a King: 
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We can confirm that this is the correct answer by counting 
the number of cards that satisfy our two constraints 
of being red or being a King. There are 26 red cards, 
including the red Kings. When we add in the two black 
Kings, we now have 28 cards altogether. Therefore, the 

proportion of cards that satisfy conditions A or B is 28/52 
= 7/13 = .53846. We can now see that subtracting the third 
term in equation 2.A3.3, p(A)p(B), from the first two 
serves to prevent red Kings from being counted twice.

The AND Rule for Dependent  
Events: p(A and B) = p(A)p(B|A)

Not all events are independent; some are dependent. To 
understand dependence, let’s first think about indepen-
dent events. Let’s say we draw a card from a shuffled 
deck, put it back in, reshuffle, and then draw again. This 
is called sampling with replacement. What is the prob-
ability of drawing two aces in two successive draws 
when sampling with replacement? Well, there are two 
events (A = drawing an Ace on the first draw, B = draw-
ing an Ace on the second draw). The probability of A 
is p(A) = 1/13 and the probability of B is p(B) = 1/13. 
Therefore, using the AND rule (from equation 2.A3.2), 
we find that the probability of A and B is p(A and B) = 
p(A)p(B) = 1/(13 * 13) = 1/169 = .00592.

Now, let’s change the example slightly and imagine 
drawing two cards without replacing the first one 
before the second one is drawn. This is called sampling 
without replacement. What is the probability now of 
drawing two aces? If an Ace had been drawn on the first 
draw, then the probability of an Ace on the second draw 
has changed. If an Ace was the first card drawn, then 
only 51 cards remain and only three of these are aces. 
Therefore, the probability of drawing an Ace on the 
second draw depends on whether an Ace was drawn on 
the first draw. Therefore, we can’t use equation 2.A3.2. 
Rather, we use equation 2.A3.4 as follows:

p(A and B) = p(A) p(B A). (2.A3.4)

The term p(B|A) should be read as “the probability of 
event B occurring, given that event A has occurred.” 
In our example, this means the probability of drawing 
an Ace on the second draw, given that an Ace was 
drawn on the first draw. We call p(B|A) a conditional 
probability.1

Because there are four aces in the deck, the 
probability of the first card drawn being an Ace is p(A) 
= 4/52 = 1/13 = .07692. As we noted, if the first card 
drawn was an Ace, then there are only three aces in the 
remaining 51 cards. So, when the second card is drawn, 
the probability of drawing an Ace is only p(B|A) = 3/51 

1. Please note, we will return to the important issue of conditional probabilities in Chapter 7, where we discuss significance 
tests. If you hear that a result is statistically significant, this means someone has conducted a significance test. You may be 
surprised to learn that psychologists are often harshly criticized for misinterpreting the results of significances tests. Many of 
these misinterpretations arise from not understanding the concept of conditional probability. Therefore, conditional probability is 
not a minor concept. It is hugely important for the correct interpretation of significance tests. See you in Chapter 7.
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LEARNING CHECK 1

1. What is the probability that a card drawn from a 
52-card deck will be an 8 or a 9?

2. What is the probability that in two independent draws 
from a 52-card deck, the first card will be an 8 and the 
second card will be a 9?

3. What is the probability that a card drawn from a 
52-card deck will be an 8 or red?

4. What is the probability that in two successive draws 
from a 52-card deck, the first card will be an 8 and 
the second will be a 9 when sampling is without 
replacement?

Answers

1. p = p(8) + p(9) = 4/52 + 4/52 = 8/52 = 2/13 = .1538.

2. p = p(8) * p(9) = 4/52 * 4/52 = 1/13 * 1/13 = 1/169 = .0059.

3. p = p(8) + p(red) - p(8)p(red) = 1/13 - 1/2 - (1/2 * 1/13) = .5385.

4. p = p(8) * p(9|8) = 1/13 * 4/51 = .0769 * .0784 = .006.

FIGURE 2.A3.1 ■ A Deck of Playing Cards

There are four suits (Spades, Clubs, Diamonds, and Hearts) and 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King).
© iStock.com/imannaggia

= 1/17 = .05882. If we now work through equation 
2.A3.4,  we will find that
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So, the probability of drawing two aces is greater 
if we draw with replacement than if we draw without 
replacement. Another way to say this is that the 
probability of drawing two aces is greater when the 
draws are independent versus dependent.
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APPENDIX 2.4: PROBABILITY DENSITY FUNCTIONS

Functions

You probably encountered functions in high school 
mathematics. If not, then you almost certainly recog-
nize this: y = x2. This is the square function. Functions 
are like black boxes. You put a number in, and you get 
a number out. For this reason, it’s common to express 
functions like this: y = f(x). The f means function, x is 
the input, and y is the output. Something goes on inside 
the black box called f, and a number pops out, which 
we call y. In the case of the square function, you put in 
some number x, and you get out the square of the num-
ber, which we call y. The defining feature of a function 
is that there is a single y value for every possible x value. 
Therefore, y is said to be a function of x. Probability 
density functions are functions for this reason; there is 
a single y value for each x value, as shown in Figure 2.4. 
But what is the y value in Figure 2.4?

Density

The term density should be familiar. When we talk 
about population density, for example, we mean the 
number of people per square mile or square kilome-
ter. Population density is greater in cities than in rural 
areas. Density usually refers to the number of things 
(people, trees, worms, neurons) per unit measure 
(square mile, acre, cubic foot, cubic millimeter). In a 
grouped frequency table (e.g., Table 2.8), we can think 
of the number of scores per interval as density. The 
more scores per interval, the greater the density. So, the 
raw frequency counts tell us something about the den-
sity of scores in an interval.

The notion of density is more abstract for 
mathematicians and statisticians. It differs from the 
usual notion of density in that it is defined at a point rather 
than for some width, area, or volume. How can density 
be defined at a point? Let’s start by thinking about a 
traffic jam that stretches for 5 miles, or 8.05 kilometers. 
Cars are packed bumper to bumper,  so the density of 
cars is the same at each point along the highway. If 
you count the number of cars in a 1-kilometer stretch 
(interval), you might find that there are 400 cars in this 
interval. So, the density is 400 per kilometer. If you 
count the number of cars in a half-kilometer interval, 
you would find 200 per half kilometer. Now, 400 per 
kilometer is the same density as 200 per half kilometer, 
and it is also the same as 100 per quarter kilometer. All 
of these measures of density can be put on the same 
scale by dividing the number of cars in an interval by 

the interval width. The interval widths for this example 
are 1 kilometer, .5 kilometers, and .25 kilometers. 
So, if we divide the counts (400, 200, and 100) by the 
corresponding interval widths, we obtain 400/1 = 400, 
200/.5 = 400, and 100/.25 = 400. In this way, density can 
be computed independently of interval width. So, how 
does this relate to specifying density at a point?

We will now return to the distribution of heights 
that we discussed in Chapter 2. Figure  2.A4.1 shows 
histograms of 1,000,000 heights drawn from a known 
distribution. The widths of the intervals decrease from 
5.33 inches (Figure 2.A4.1a) to .67 inches (Figure 2.A4.1f). 
As interval width decreases, fewer scores fall in each 
interval. Therefore, the heights of the histogram bars 
decrease as interval width decreases.

In our traffic jam example, we noted that density 
involves dividing the number or proportion of scores in 
each interval by the interval width. This has been done 
in Figure 2.A4.2, in which the bar heights (p = n/N) 
from Figure 2.A4.1 are divided by the interval width (p/
width) to yield density. As interval width decreases, the 
tops of the histogram bars become indistinguishable 
from the solid line, which represents the probability 
density function of the distribution from which the 
scores were drawn.

Let’s now think of a theoretical population with an 
infinite number of scores, rather than just 1,000,000. 
As interval width becomes smaller and smaller, two 
things happen. First, density converges to a single 
unambiguous value. (To see this, think about the 
histogram bar centered on 65 in Figures 2.A4.2a 
through 2.A4.2f.) Second, in the limit, the width 
becomes zero. This means that (i) density can be defined 
at a point and (ii) the probability of any specific score 
actually occurring is 0. The result is the continuous 
line (function) that defines a y value (density) for each x 
value. We call this a probability density function.

It might seem like a bit of a paradox that as interval 
width decreases, the density of scores in a small region 
of the distribution approaches a constant value, whereas 
the proportion of scores in each interval approaches 
zero. This is something we just have to live with.

Probability Density

So far, we’ve seen the following things. The curve in 
Figure 2.4 is a function. The y values represent the 
abstract notion of density defined at a point. Density 
does not mean probability. So why is this called a prob-
ability density function? Let’s see if we can answer this.
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FIGURE 2.A4.1 ■ Histograms of 1,000,000 Heights

(a through f) Each panel shows a histogram of 1,000,000 heights. The interval widths range from 5.33 inches (a) to .67 inches 
(f). The y-axis represents the proportion of scores ( p = n/N) in each interval. As interval width decreases, fewer scores fall in 
each interval.

0.00

0.10

0.20

0.30

0.40

0.50
(a) (b)

(c) (d)

(e) (f)

P
ro

po
rt

io
n 
= 

(n
/N

)

0.00

0.10

0.20

0.30

0.40

0.50

P
ro

po
rt

io
n 
= 

(n
/N

)

49 53 57 61 65 69 73 77 81
0.00

0.10

0.20

0.30

0.40

0.50

Height (inches)

P
ro

po
rt

io
n 
= 

(n
/N

)

49 53 57 61 65 69 73 77 81
Height (inches)

In Chapter 2, we considered distributions defined by 
the categories of qualitative variables, discrete values 
of quantitative variables, and intervals of quantitative 
variables. Each of these categories or intervals was 
associated with a probability, and the sum of all these 
probabilities is 1. Something very similar is true of a 
probability density function. As interval widths get 
narrower, the number of intervals increases while the 
proportion of scores in each interval decreases. This 
means that no matter how narrow the intervals, the sum 
of the proportions in the intervals will be 1. So, here is 
another oddity for us. As the interval width approaches 
zero, the sum of the proportions associated with the 

intervals remains 1. At the same time, no matter how 
narrow the intervals are, some will contain more scores 
than others. This is another seeming paradox that we 
just have to live with.

If you have taken a calculus course, you will recognize 
that I’ve just described integration. Therefore, we can 
say that density functions are probability functions, 
because the area under the curve is 1. For this reason, the 
function in Figure 2.A4.2 (the curved line) is a probability 
function. If we compute the area under the curve between 
any two values of x, we obtain the probability that a 
randomly chosen score will fall in that interval.

And that’s all I have to say about that.
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FIGURE 2.A4.2 ■ An Illustration of Density

(a through f) Densities computed for 1,000,000 heights. The interval widths range from 5.33 inches (a) to .67 inches (f). The 
y-axis represents the proportion of scores (p = n/N) in each interval divided by the width of the interval p/width. The solid 
line is the mathematical density function associated with the distribution from which the scores were drawn. As the interval 
width approaches 0, the heights of the histogram bars increasingly resemble the continuous probability density function or pdf.
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