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APPENDIX 3.3: CALCULATING SKEW AND KURTOSIS

We mentioned in Chapter 1 that parameters are simply 
numbers that characterize the scores of populations. 
The mean (µ) and variance (σ2) are two of the most 
important parameters associated with statistical 
analysis in psychology. In subsequent chapters, we will 
use statistics to estimate these important parameters. 
Although µ and σ2 will be our primary concern, skew 
and kurtosis are parameters in the same way as µ 
and σ2. Skew and kurtosis can be computed from the 
scores in populations in a manner very similar to the 
computation of the mean and variance. Therefore, 
we will take a moment to comment on how skew and 
kurtosis are computed in populations and samples.

Moments

At the beginning of Chapter 3, we noted that the mean 
and variance had very similar definitions. The mean 
of a population is the sum of all scores divided by N. 
Statisticians sometimes call this the first raw moment 
of the distribution. The variance in a population is the 
sum of squared deviations from the mean, divided by 
N. Statisticians call this the second central moment of 
a distribution. Central moments are computed by sub-
tracting the mean from all scores and then raising these 
deviation scores to some power. (Raw moments do 
not subtract the mean from all scores.) The following 
expressions define the second, third, and forth central 
moments:

θ
µ

θ
µ

θ
µ

2

2

3

3

4

4

=
−∑

=
−∑

=
−∑

( )

( )

( )
.

y
N
y
N
y
N

The symbol θ is pronounced theta. Therefore, θ1, θ2, 
θ3, and θ4 represent the first, second, third, and fourth 
central moments of a distribution, respectively. All are 
moments computed in the same way, and they differ 
only in the power to which the differences between 
y and µ are raised. You may not be familiar with 
exponents other than 2 (squaring), but they are really 
not complicated, as shown in the following examples:
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So, the exponents simply tell us how many times to 
multiply a number by itself.

Skew and Kurtosis

The second, third, and fourth central moments are related 
to skew and kurtosis. In a population, skew is defined as

skew =
θ
σ
3

3
(3.A3.1)

where σ is the population standard deviation (or the square 
root of the second central moment, θ2). Skew, as defined 
in equation 3.A3.1, can take on positive and negative 
values. Symmetrical distributions (such as in Figures 3.3a 
and 3.4a) have zero skew. Distributions that are skewed 
to the right yield positive skew values, and those that are 
skewed to the left yield negative skew values. The right-
skewed distribution in Figure 3.3 has a skew of about 3.6, 
and the left-skewed distribution has a skew of about -3.6.

Kurtosis in a population is defined as

kurtosis =
θ

σ
4

4
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Kurtosis, as defined in equation 3.A3.2, can take 
on only positive values. The larger the values, the 
more leptokurtic the distribution. However, when 
statisticians talk about kurtosis, they often mean excess 
kurtosis. A normal distribution has a kurtosis of 3, when 
defined using equation 3.A3.2. Statisticians define 3 
as normal kurtosis. Excess kurtosis is the difference 
between kurtosis and normal kurtosis. Therefore, 
excess kurtosis is defined as follows:

excess kurtosis = −
θ
σ
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A normal distribution has an excess kurtosis of 0. 
The leptokurtic distribution in Figure 3.4b has an 
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excess kurtosis of 3, and the platykurtic distribution 
in Figure 3.4c has an excess kurtosis of -1. The flattest 
possible distribution (most platykurtic) is the uniform, 
or rectangular, distribution. A uniform distribution is 
one for which the densities are equal for all possible 
numbers between some minimum and maximum. For 
example, a uniform distribution may have min = 0 
and max = 1, and all values between min and max are 
equally probable. Uniform distributions have excess 
kurtosis of -1.2.

Estimating Skew and Kurtosis

The definitions of skew and excess kurtosis in equa-
tions 3.A3.1 and 3.A3.3 are parameters. These for-
mulas should not be applied to samples to estimate 
the population parameters. Just as the definition of the 
sample variance differs from that of the population 
variance, the definitions of the sample skew and sample 
kurtosis differ from those of the population skew and 
kurtosis. In all cases, the differences in the formulas 
have to do with making the statistics good estimators 
of the parameters. Once again, I promise this will be 
explained in Chapter 5.

The formula for skew for a sample is

skew =
θ3
3
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where n is sample size, s is the sample standard 
deviation, and θ

̭
3 is computed exactly like θ3 but from 

the scores in a sample rather than scores in a population; 
i.e., θ

̭
3  = Σ(y - m)3/n. Equation 3.A3.4 looks horrible. 

(If I’d seen something like this in my first statistics 
course, I would have had an anxiety attack. Sorry.) 
Notice, however, that the black term in equation 3.A3.4 
looks exactly like equation 3.A3.1, except that θ

̭
3 and s 

are computed from scores in the sample. That’s not so 

bad. The blue term is called a correction factor, which 
we already discussed when talking about the sample 
variance. If you play around with the correction factor, 
you’ll notice that it gets closer to 1 as n (sample size) 
gets larger, because n-1 and n-2 get closer and closer 
to n, making (n-1)(n-2) closer and closer to n2. This 
means that θ

̭
3/s3

 needs less correction as sample size 
increases. In statistics, we like large samples!

The formula for excess kurtosis for a sample is
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where n is sample size, s is the sample standard deviation, 
and θ

̭
4 is computed exactly like θ4 but from the scores in 

a sample rather than scores in a population; i.e., θ
̭
4  = Σ(y 

- m)4/n. If equation 3.A3.4 looks horrible, then equation 
3.A3.5 looks positively ghastly. But notice again that the 
black terms in equation 3.A3.5 look exactly like equation 
3.A3.3, except that θ4 and s are computed from scores 
in the sample. The correction factors in blue behave the 
same way as the correction factor in the sample variance 
and the sample skew. As sample size increases, the 
correction factors get closer to 1.

We are rarely interested in estimating skew and 
kurtosis for their own sake. Rather, we use skew 
and kurtosis computed from a sample to assess the 
normality of the population from which the sample 
was drawn. When a sample is drawn from a normal 
population, then skew and excess kurtosis should 
be close to 0. Large departures from 0 (positive or 
negative) would suggest that our sample was not drawn 
from a normal population. Just how large a departure 
from 0 would be cause for concern is something we will 
discuss in later chapters.

̭

LEARNING CHECK 1

1. If y = {2, 2, 5, 5, 5, 11} is a small population of 
scores, calculate the following: (a) µ, (b) σ, (c) θ2, 

(d) θ3, (e) θ4, (f) skew, (g) kurtosis, and (h) excess 
kurtosis.

Answers

1.  (a) µ = 5. (b) σ = 3. (c) θ2 = 9. (d) θ3 = 27. (e) θ4 = 243. 
(f) Skew = θ3/σ3 = 27/27 = 1. (g) Kurtosis = θ4/σ4 = 

243/81 = 3. (h) Excess kurtosis = kurtosis - 3 = 3 -  
3 = 0.
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APPENDIX 3.4: THE IMPORTANCE OF THE MEAN AND STANDARD DEVIATION

In Chapter 2, we saw that probability distributions 
convey the relative standing of scores within a sample 
or population. That is, knowing how scores are 
distributed allows us to determine the proportion of the 
distribution at or below any score of interest. We can 
say that a score is extreme or unusual if there are very 
few scores above it (thus an extremely high score) or 
very few scores below it (thus an extremely low score).

In Chapter 3, we saw that the mean is an important 
measure of central tendency for a distribution, and 
the standard deviation is an important measure of 
dispersion. There is an important connection between 
the mean and standard deviation of a distribution, and 
the relative standing of scores in a distribution.

Looking back at the distributions in Figures 3.3, 3.4, 
and 3.5, you might notice that scores tend to fall close 
to the mean, on average. In fact, it is unusual for a score 
to fall a long way from the mean. In later chapters, we 
will use the standard deviation of a distribution as our 
measure of distance, and we will talk about how many 
standard deviations a score is from the mean of its 
distribution. In Chapter 4, we will make an important 
connection between how many standard deviations 
a score is from the mean of its distribution and the 
proportion of scores in the distribution above or below it.

Here is an interesting preview of where we are 
going. The Russian mathematician Pafnuty Chebyshev 
(1821–1894) proved that at least 75% of a distribution of 
scores falls within two standard deviations of the mean. 
That is, at least 75% of a distribution of scores falls 
in the interval µ-2(σ) to µ+2(σ). We can express this 
interval more compactly as µ ± 2(σ). Some distributions 
will have more than 75% of their scores within two 
standard deviations of the mean, but no distribution 
will have less than 75% of scores within two standard 
deviations of the mean.

This point is illustrated in Figure 3.A4.1. Three 
distributions (skewed, normal, and bimodal) are 
shown. All three distributions have µ = 68 and σ = 4. 
The two upward pointing arrows on the x-axis show 
µ ± 2(σ), which means 68 ± 8, or 60 and 76. Thus, 
Chebyshev’s theorem tells us that if we knew only 
that a distribution had µ = 68 and σ = 4 but we knew 
nothing about the shape of the distribution (it could 
have been one of these three or infinitely many others), 
we would know that at least 75% of scores would fall 
between 60 and 76.

In Figure 3.A4.1, the skewed and normal distribu-
tions have much more than 75% of scores falling in the 

interval µ ± 2(σ). There are many other distributions that 
also have more than 75% of scores falling in the interval 
µ ± 2(σ). But even if we know nothing about the shape 
of a distribution, we can say that at least 75% of scores 
fall in the interval µ ± 2(σ).

In fact, Chebyshev’s result is more general than this 
because it states the minimum proportion of a distribu-
tion falling within any number (k) of standard devia-
tions of the mean, as long as k > 1. That is, Chebyshev’s 
theorem allows us to calculate the minimum proportion 
of a distribution of scores falling in the interval µ ± k(σ), 
where k is the number of standard deviations from the 
mean. This proportion is given by the following, very 
simple expression:
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For our example with k = 2, we can see how we obtained 
75%. By plugging numbers into this expression, we find
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So, the proportion of the distribution in the interval µ ± 
2(σ) is .75, which is 75%.

Equation 3.A4.1 shows us the minimum proportion 
of a distribution within the interval µ ± k(σ). This means 

FIGURE 3.A4.1 ■ Chebyshev’s Theorem 
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An illustration of the meaning of Chebyshev’s theorem for 
the case of k = 2. The theorem says that no matter what shape 
the distribution has, at least 75% lies in the interval µ ± 2(σ), 
which means that at most 12.5% of it lies above µ + 2(σ), and 
at most 12.5% lies below µ - 2(σ). 
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that the maximum proportion of the distribution outside 
the interval is simply

1

2k
. (3.A4.2)

For our example with k = 2, we find that the maximum 
proportion of the distribution outside the interval µ ± 
k(σ) is
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or 25%. Figure 3.A4.1 shows that half of this percentage 
(12.5%) is above µ + 2(σ) and the other half is below µ - 
2(σ). This means that if a score is 2 standard deviations 
above the mean, then at most 12.5% of scores are higher 
than it. If a score is 2 standard deviations below the 
mean, then at most 12.5% of scores are lower than it.

More generally, if a score is k standard deviations 
above the mean, then the maximum proportion of the 
distribution above it is
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If a score is k standard deviations below the mean, then 
the maximum proportion of the distribution below it is 
also 0.5/k2. For k = 2, we can see that
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or 12.5%, as shown in Figure 3.A4.1.
Chebyshev’s theorem tells us about the minimum 

proportion of a distribution within the interval µ ± k(σ) 
and the maximum proportion of a distribution outside the 
interval µ ± k(σ). Once again, Figure 3.A4.1 shows that for 
many distributions, the proportion outside the interval  µ 
± k(σ) will be much less than 1/k2. 

The value of this theorem is that it gives us some 
guidance about what constitutes extreme or unusual 
scores when we know only the mean and standard 
deviation of a distribution. However, if we do know 
something about the shape of the distribution, then our 
judgments about extreme or unusual scores can be much 
more precise. In Chapter 4, we will see exactly this. If we 
happen to know that scores were drawn from a normal 
distribution, we can make far more accurate statements 
about scores falling k standard deviations from the mean. 
This will have huge practical consequences that will 
carry through the rest of this book.

LEARNING CHECK 1

Let’s say we know the mean and standard deviation of 
a distribution but not its shape. Answer the following 
questions and round your answers to two decimal places.

1. What is the minimum proportion of the distribution 
falling in the intervals (a) µ ± 2(σ), (b) µ ± 3(σ), (c) µ ± 
1.25(σ), and (d) µ ± 1.4142(σ)?

2. What is the maximum proportion of the distribution 
falling (a) above µ + 1.25(σ) and (b) below µ – 1.25(σ)?

3. What is the maximum proportion of the distribution 
falling (a) above µ + 1.4142(σ) and (b) below µ 
- 1.4142(σ)?

Answers

1. (a) 1 - 1/22 = .75. (b) 1 - 1/32 = .89. (c) 1 - 1/1.252 = .36. 
(d) 1 - 1/1.41422  = .50.

2. (a) 0.5/1.252 = .32. (b) 0.5/1.252 = .32.

3. (a) 0.5/1.41422 = .25. (b) 0.5/1.41422 = .25.


