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APPENDIX 4.2: EXPLAINING NORMAL DISTRIBUTIONS

An interesting feature of normal distributions is 
that each is completely defined by its mean (µ) and 
its standard deviation (s). Here is the mathematical 
definition of a normal distribution:
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The left side of the equation, p(x), refers to the density of 
the normal distribution for a given value of x, which is 
defined on the right side of the equation. [It is unfortunate 
that statisticians denote density at x with p(x), because 
density does not mean probability. This is an ambiguity 
that is usually resolved by context.] Remember, for every 
value of x, there is only one value of y; in this case, the y 
value is density, which is denoted by p(x).

We focus on the first term on the right-hand side of 
equation 4.A2.1, in which we find the expression (x − µ)2/
(2σ2). This says that the density of the distribution at x is 
related to the squared difference between x and µ [i.e., (x − 
µ)2] divided by two times the variance (i.e., 2σ2). So, in this 
part of the equation, we have x, µ, and σ. The 2 is what we 
call a constant, because it is a number that never changes. A 
second constant in this part of equation 4.A2.1 is e, which is 
an irrational number, whose first few digits are 2.71828182. 
Irrational numbers have an infinite number of non-repeat-
ing digits following the decimal place. You might recog-
nize e as the base of the natural logarithm, which is widely 
used in mathematics and statistics.

In the second term on the right side of equation 
4.A2.1, there is a third constant, π. This is the same con-
stant that we use when finding the area of a circle (i.e., 
area = 2πr2). It is another irrational number, whose first 
few digits are 3.14159265.

So, we have three constants in equation 4.A2.1 (2, π, 
and e). We also have the value of x for which we wish to find 
the density, and we have the parameters of the distribution, 
µ and σ. Therefore, the density of a normal distribution at x 
[i.e., p(x)] is completely determined by µ and σ, because all 
other components of the equation are constants.

To understand how equation 4.A2.1 produces a 
normal distribution, we will unpack its components 
and illustrate each one with reference to Figure 4.A2.1. 
The fundamental component of equation 4.A2.1 is the 

expression (x − µ)2/(2σ2), which says, as noted above, 
that the density of the distribution at x is related to 
the squared difference between x and µ [i.e., (x − µ)2] 
divided by two times the variance (i.e., 2σ2). The value 
of (x − µ)2/(2σ2) for each value of x is shown in Figure 
4.A2.1a. Note that because the difference between x 
and µ is squared, (x − µ)2/(2σ2) will always be positive.

FIGURE 4.A2.1  ■  Unpacking the Formula
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The constant e (in equation 4.A2.1) is raised 
to the power of (x − µ)2/(2σ2) for each value of x; i.e., 
e x −( )µ σ2 22/( ) . The result is shown in Figure 4.A2.1b, 
in which the value of y increases more quickly as x 
increases than it did in Figure 4.A2.1a.

Figure 4.A2.1c shows that when the reciprocal of 
e x −( )µ σ2 22/( )  is computed [1

2 22
/

/( )e x−( )µ σ ], small num-
bers become large numbers and large numbers become 
small numbers. The result is a function that has the gen-
eral bell shape of a normal distribution. However, the 
function shown in Figure 4.A2.1c is not a probability 
density function because the area under the curve is not 
1. To transform the function shown in Figure 4.A2.1c 
into a probability density function, we multiply the 
term 1

2 22
/

/( )e x −( )µ σ  by 1 2/ πσ . The result (shown in 
Figure 4.A2.1d) is a probability density function. It is a 
normal distribution with a mean of µ = 65 and standard 
deviation of σ = 4.

It is extremely interesting that the parameters used 
to generate normal distributions using equation 4.A2.1 
are also quantities that can be computed from the distri-
bution of scores in a normal population. Remember that 
μ and σ are computed as follows:

µ = ∑
x
N

,

and

σ
µ

=
−( )∑ x
N

2

.

This is very nice. The parameters of interest are both  
(i) properties that can be computed from the distribution 
of scores and (ii) part of the definition the population’s 
density function. Not all probability density functions 
are this simple.

FIGURE 4.A3.1  ■  Normal and Skewed Populations
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APPENDIX 4.3: ASSESSING NORMALITY: QQ PLOTS, SKEW, AND KURTOSIS

Many statistical analyses described in this book 
depend in one way or another on the assumption that 
scores have been sampled from a normal distribution. 
Therefore, we need methods to assess whether this 
assumption is reasonable. One informal approach 
is to simply create a histogram and try to judge, 
visually, whether it is obviously non-normal. Figure 
4.A3.1 illustrates a normal population and a skewed 
population. For purposes of illustration, samples of 
20 randomly selected scores were drawn from each of 
these populations. Histograms of these two samples are 
shown in Figure 4.A3.2.

It is clear from Figure 4.A3.2 that a distribution of 
sample scores shares characteristics of the population 
from which the scores were drawn (Figure 4.A3.1). 
Therefore, based on only the samples, we might sus-
pect that the scores in Figure 4.A3.2b were drawn 
from a skewed distribution. A problem with this 
approach, and indeed almost all approaches, is that 
when samples are small, their distribution can look 
very non-normal even if the scores came from a nor-
mal distribution.

FIGURE 4.A3.2  ■  Normal and Skewed Samples
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QQ Plots

A common method for judging the normality of a sam-
ple is to create a QQ plot. The letter Q stands for quan-
tile. The quantiles of normal distributions are z-scores. 
Therefore, QQ plots compare two kinds of quantiles, 
which in this case means two sets of z-scores. These 
two sets of z-scores are described in Table 4.A3.1. 

The left and right sides of Table 4.A3.1 present a QQ 
analysis of the normal distribution and a QQ analysis of the 
skewed distribution, respectively. We will work through 
the left side first. The first column shows the scores in the 
sample. At the bottom of this column, we find the mean of 
the sample (m = 50) and its standard deviation (s = 12). The 
scores in the sample are converted to z-scores by divid-
ing the difference between each score and the mean by 
the sample standard deviation [i.e., z = (x − m)/s]. These 
z-scores are shown in the column labeled z. Notice that the 
scores in the x column are sorted from largest to smallest.

Beside each z is the approximate proportion of 
scores in the sample at or below x (or z). In the simplest 
case, when there are no ties, these proportions would 
range from 1/n to n/n = 1, in steps of 1/n. In our exam-
ple, this would mean that the P(x) values would range 
from 1/20 to 1, in steps of 1/20. This creates a problem 
because the z-score corresponding to P(x) = 1 would be 
∞, and that’s not very useful. There are many tweaks that 
can be made to address this issue. The simplest solution 
is to adjust the P(x) values slightly and have them range 
from 1/(n+1) to n/(n+1). Using this adjustment, the P(x) 
values now range from 1/21 (.048) to 20/21 (.952) in 
steps of 1/21 = .0476.

The next step is the interesting one. The numbers 
in the column labeled q represent the z-scores from a 
normal distribution that correspond to the P(x) values 
in the third column. [The q-values were obtained using 
the Excel NORM.S.INV function on the P(z) values 
in the third column; see Figure 4.A3.4.] When scores 
in a sample are drawn from a normal distribution, 
we would expect the z-scores and q-scores to be very 
similar. When we plot one against the other, as done 
in Figure 4.A3.3a, we would expect the pairs of scores 
to fall on a line going from bottom left to top right, as 
shown. Although we wouldn’t expect the plot of z and 
q to make a perfectly straight line, there should be no 
systematic deviations from linearity. Therefore, Figure 
4.A3.3a shows what one would expect to find when the 
sample has been drawn from a normal distribution.

TABLE 4.A3.1  ■  Illustration of QQ Data

Normal Distribution Skewed Distribution

x z P(x) q x z P(x) q

70.87 1.74 0.952 1.67 142.83 3.38 0.952 1.66

67.84 1.49 0.905 1.31 85.78 1.56 0.905 1.31

66.20 1.35 0.857 1.07 61.33 0.78 0.857 1.07

60.85 0.90 0.810 0.88 61.31 0.78 0.810 0.88

58.99 0.75 0.762 0.71 40.22 0.11 0.762 0.71

57.34 0.61 0.714 0.57 37.16 0.01 0.714 0.57

55.78 0.48 0.667 0.43 35.67 −0.04 0.667 0.43

55.56 0.46 0.619 0.30 31.43 −0.17 0.619 0.30

53.77 0.31 0.571 0.18 28.67 −0.26 0.571 0.18

50.10 0.01 0.524 0.06 28.36 −0.27 0.524 0.06

48.78 −0.10 0.476 −0.06 26.40 −0.33 0.476 −0.06

46.88 −0.26 0.429 −0.18 24.92 −0.38 0.429 −0.18

46.61 −0.28 0.381 −0.30 21.78 −0.48 0.381 −0.30

44.86 −0.43 0.333 −0.43 21.00 −0.50 0.333 −0.43

41.58 −0.70 0.286 −0.57 19.39 −0.55 0.286 −0.57

40.43 −0.80 0.238 −0.71 19.03 −0.57 0.238 −0.71

37.67 −1.03 0.191 −0.88 14.95 −0.70 0.191 −0.87

36.43 −1.13 0.143 −1.07 14.69 −0.70 0.143 −1.07

32.89 −1.43 0.095 −1.31 11.76 −0.80 0.095 −1.31

26.59 −1.95 0.048 −1.67 9.38 −0.87 0.048 −1.66

50.00 36.80

12.00 31.38

FIGURE 4.A3.3  ■  Two QQ Plots

 

(a and b) Plots of theoretical quantiles (z-scores) on the 
horizontal axis against observed quantiles (z-scores) on 
the vertical axis. When the sample is drawn from a normal 
distribution, we expect the scatter of points to vary randomly 
about the diagonal line, as in (a). When the sample is drawn 
from a non-normal distribution, we expect the scatter of points 
to vary systematically about the diagonal line, as in (b).
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When a sample is drawn from a non-normal 
distribution, we would expect the plot of z and q to 
deviate systematically from a straight line. Figure 
4.A3.3b plots the z- and q-scores calculated in the 
right part of Table 4.A3.1 for the sample drawn from 
the skewed distribution. This plot clearly deviates 

systematically from a straight line. This is very 
strong evidence that the sample was not drawn from 
a normal distribution.

Most statistical packages, such as SPSS and SAS, 
provide routines to create QQ plots. Making QQ plots in 
Excel is also very straightforward (see Figure 4.A3.4).

FIGURE 4.A3.4  ■  Computing QQ Scores in Excel 

 

The original scores are shown under the heading x. The cumulative frequencies (i.e., number of scores at or below x) are to the left 
(Cum. F). The z-scores corresponding to the x values are shown under the heading z, and the Formulas for computing the z-scores are 
in the next column. The approximate cumulative proportions computed as (Cum. F)/(n+1) are shown under P(x), and Formulas used to 
compute these are provided on the right. The theoretical quantiles, which are the z-scores corresponding to the approximate cumulative 
proportions, are shown under q. As shown in the next column, these were computed with NORM.S.INV (see Appendix 4.1).

An alternative to the QQ plot is the PP plot. Rather 
than plot theoretical and observed quantiles against 
each other (as in Figure 4.A3.3), a PP plot plots theoreti-
cal and observed proportions [P(x)] against each other. 
The observed proportion is the proportion of the sam-
ple falling at or below each score in the sample. (This 
proportion would have to be corrected using a method 
like the one described earlier.) The theoretical propor-
tion is the proportion of a normal distribution, having 
the same mean and standard deviation as the sample, 

falling below each score in the sample. These theo-
retical and observed proportions can be plotted against 
each other just as we did for theoretical and observed 
quantiles in the QQ plot.

QQ Plots in SPSS

To illustrate QQ plots in SPSS, we will make use of the 
two sets of 20 raw scores in Table 4.A3.1. These two sets 
of scores were named xNormal and xSkewed in an SPSS 
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data file. To compute a QQ plot, we do the following: 
Analyze→Descriptive Statistics→Q-Q Plots . . . and the 
dialog in Figure 4.A3.5 appears. The two variables have 
been moved into the Variable(s): panel in the usual way. 
The drop-down list under Test Distribution allows us to 
compare our data against many different distributions, 

but the Normal distribution is the one of interest. Below 
the Variable(s): panel, there is a check beside the option 
to Standardize values. This means that z-scores will be 
used as quantiles as in Figure 4.A3.2. Clicking  
begins the analysis, and the output is shown in Figure 
4.A3.6.

FIGURE 4.A3.5  ■  The QQ Plots Dialog in SPSS

 

FIGURE 4.A3.6  ■  QQ Plots SPSS Output

QQ plots produced by SPSS for variables xNormal (a) and xSkewed (b).
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Assessing Skew and  
Excess Kurtosis in SPSS

In Appendix 3.3 of Chapter 3, we described how skew 
and excess kurtosis can be computed from samples. 
Normal distributions have 0 skew and 0 excess kurto-
sis. In Appendix 3.1, we saw that skew and excess kur-
tosis are calculated through the Analyze→Descriptive 
Statistics→Descriptives . . . dialog in SPSS. Figure 
4.A3.7 shows this analysis for xNormal and xSkewed. 
For xNormal, skew and excess kurtosis (−0.070 and 
−0.602, respectively) seem quite close to the values of 
0 expected from normal distributions. For xSkewed, 
skew and excess kurtosis (2.382 and 6.488, respec-
tively) seem very far from the values of 0 expected from 
normal distributions.

z
Skew

=
−

= −
0 07

0 512
0 14

.

.
. ,

and

z
ExcessKurtosis

=
−

= −
0 602

0 992
0 61.

.

.
.

Because neither ratio is outside the interval ±2, there 
is little concern that the sample was drawn from a non-
normal population.

For the sample drawn from the skewed distribution, 
the z-values corresponding to skew and excess kurtosis 
are

z
Skew

= =
2 382

0 512
4 65

.

.
.

and

z
ExcessKurtosis

= =
6 488

0 992
6 54.

.

.
.

Because both ratios are outside the interval ±2, there is 
serious concern that the sample was drawn from a non-
normal population.

The logic of this rule of thumb won’t become clear 
until we reach Chapter 7, where we cover significance 
tests. However, the fact that the quantities we’ve com-
puted are denoted with zSkew and zExcessKurtosis may pro-
vide a clue to the logic. Remember, most z-scores fall 
within ±2 standard deviations of the mean of the distri-
bution. Therefore, it is unusual for a z-score to be out-
side the interval ±2. So, if it were true that a sample was 
drawn from a normal distribution with zero skew and 
zero excess kurtosis, it would be very unusual for zSkew 
and zExcessKurtosis to be outside the interval ±2. If one of 
these is outside the interval ±2, there is a strong pos-
sibility that the assumption that the sample was drawn 
from a normal distribution is wrong.

FIGURE 4.A3.7  ■  SPSS Output

Analysis of skew and excess kurtosis in SPSS for variables 
xNormal and xSkewed.

 

When we say that −0.070 and −0.602 are close to 
0 and that 2.382 and 6.488 are not, one immediately 
wonders what metric allows us to judge close and far. A 
rule of thumb is that when the ratio of a statistic (skew 
or excess kurtosis) to its standard error (shown under 
the headings Std. Error) is outside the interval ±2, there 
is strong evidence that the sample was not drawn from 
a normal distribution. We will call this ratio z. For the 
sample drawn from the normal distribution, the z-values  
corresponding to skew and excess kurtosis are


