
1

APPENDIX 5.2: WHY ARE SO MANY DISTRIBUTIONS NORMAL?

This question may have occurred to you while you were 
reading Chapter 4. The usual explanation for the preva
lence of normal distributions is that the central limit 
theorem captures something essential about nature. The 
reasoning goes as follows. We know that many statistics 
are normally distributed when the scores contributing 
to the statistic are drawn independently from the same 
distribution. Therefore, it may be that something similar 
is at work at the level of individual scores. It might be 
that there are many independent random influences or 

factors that each contribute 
something to a given score. 
That is, any given score 
combines many independ
ent random factors, just as 
a sample mean combines 
many independent ran
dom scores. Therefore, a 
distribution of scores, like 
a distribution of means, 
will tend toward normal
ity. In the concrete example 
that follows, we will think 
about the sum of a number 
of random factors, rather 
than the mean, because 
the central limit theorem 
applies equally to sums 
of scores and means; the 
mean is just a sum divided 
by n.

Let’s think about the 
weight of a Fender Stra
tocaster guitar to illus
trate this point. The mean 
weight of a Stratocaster is 
about 7.87 pounds. There 
are many components in 
the guitar, including the 

body, neck, frets, strings, tuning pegs, pickups, pick 
guard, and so forth. Each component has a weight, so the 
weight of each component is drawn from a population of 
weights. To build a guitar, one selects a body from the 
population of bodies, a neck from a population of necks, 
a tuning peg from a population of tuning pegs, and so 
on. The selection of each component is independent of 
the selection of all other components; that is, the neck 
you choose does not depend on the pickup you choose. 

Therefore, just as the scores drawn from a population 
can be independently selected, the components of the 
guitar can also be independently selected.

Of course, there will be some variability within 
each of these populations of components. Therefore, 
when one assembles these independently selected com
ponents to make instruments, the instruments will vary 
in weight because the components vary in weight. Now, 
let’s suspend reality for a moment and imagine that the 
distributions corresponding to the components of the 
guitar have the same mean and standard deviation. If 
this were the case, then the weight of each guitar could 
be seen as a sum of scores that are independently  drawn 
from the same distribution. If each component’s weight 
was drawn from the same distribution of weights, then 
the central limit theorem tells us that the distribution of 
guitar weights will be normal if there are enough com
ponents (i.e., the number of components, n, is large).

There is a certain face validity to this idea. It’s quite 
easy to think that the variability in the components is 
independent. As mentioned, there’s no reason to think 
that the weight of the body is affected by—or depen
dent on—the weight of the low E string. However, it 
is not reasonable to imagine that weights of the com
ponents are drawn from populations having the same 
mean and variance. (The mean and standard deviation 
of the distribution of body weights will be greater than 
the mean and standard deviation of the distribution of 
high E string weights.) Therefore, the form of the cen
tral limit theorem that we’re considering cannot explain 
the normality of distributions of scores. 

Fortunately, there are variants on the central limit 
theorem that make the general idea more plausible. 
For example, if the variance of each component distri
bution is much smaller than the variance of the fully 
assembled guitar distribution, then (given certain other 
assumptions that won’t be mentioned) the distribution 
of guitar weights will be normal, even if the component 
distributions are not identical.

We can think of naturally occurring phenomena 
in the same way. For example, there are many deter
minants of height. Clearly, one’s genes play a role in 
height. However, there is not a single gene that deter
mines height but many. Each may make an independent 
contribution to height. Although height may be deter
mined primarily by genes, factors such as nutrition 
and physical activity will also make a contribution. In 
addition, you can imagine that heights measured in the 
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same individual will vary from time to time depending 
on levels of fatigue and perhaps motivation to “stand up 
straight.” We can think of all of these contributions to 
height being characterized as distributions. Therefore, 
any particular measured height reflects a combination 
of values selected from these many distributions. The 
sum of these many factors contributes to the measure
ment of the height of an individual. The general result 
of this kind of contribution may be a normal distribu
tion of heights in a given human population.

One has to be a little careful here. This account of nor
mally distributed scores is speculative, to some degree, 

and has been criticized (Lyon, 2014). We have to keep in 
mind that not all distributions having many independent 
contributions are normally distributed. Reaction times are 
a classic example of this because they tend to be skewed, 
rather than normal. All things considered, however, vari
ants of the central limit theorem provide a reasonable 
account of why distributions might be normal.
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APPENDIX 5.3: THE SAMPLING DISTRIBUTION DEMO

In Chapter 5, we asserted many properties of the dis
tribution of means, variances, and proportions. There 
are some very useful online tools that help make these 
concepts concrete. Among the very best is one that  
can be found here: http://onlinestatbook.com/stat_sim/
sampling_dist/index.html.

When you click on this link, you will be presented 
with an instructions page. After reading the instruc
tions, press Begin and the dialog in Figure 5.A3.1 will 
appear.

Figure 5.A3.1a shows a distribution from which 
scores can be drawn. It defaults to a Normal distribu
tion, as indicated in the dropdown list on the right. You 
can use this dropdown list to change the distribution 
to a Skewed or Uniform distribution. Or, if you choose 
Custom, you can define your own distribution by drag
ging the mouse over the distribution.

The parameters of the distribution of scores are 
shown to the left. The mean and median are 16 and the 
standard deviation is 5. Because the distribution shown 
is normal, the skew and excess kurtosis are both 0.

The purpose of this demo is to illustrate the sam
pling distribution for various statistics. In Figure 
5.A3.1, I’ve selected two statistics to consider. The 
first is the biased variance (Variance), shown in Figure 
5.A3.1c, which we referred to as spop

2 . The second is the 
unbiased variance [Var (U)], shown in Figure 5.A3.1d, 
which we referred to as s2. In both cases, sample size 
has been set to N = 5.

There are four ways to draw samples in this dem
onstration. Choosing Animated randomly selects the 
number of scores in your sample (in this case, N = 5) 
and shows each score as a black rectangle (see Figure 
5.A3.1b). You can also choose to draw 5, 10,000, or 
100,000 samples. 

Figures 5.A3.1c and 5.A3.1d show the sampling dis
tributions of the statistics you’ve chosen to examine. To 

the left of each of these, the parameters of the distri
bution (mean, median, standard deviation, skew, and  
kurtosis) as well as the number of samples (Reps) 
that contribute to the distribution are shown. You will 
see that the two sampling distributions are based on 
1,000,002 samples. To do this, I pressed the 100,000  
button 10 times to generate 1,000,000 samples. Then I 
pressed the Animated button twice to generate the last 
sample, shown in Figure 5.A3.1b.

The example here was chosen to illustrate the notion 
of bias. Remember from Chapter 5 that the biased vari
ance is defined this way:

s y m
npop

2
2

=
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The unbiased variance is defined this way:
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The distribution of spop
2  is shown in 5.A3.1c, and the 

distribution of s2 is shown in 5.A3.1d. How do these 
figures illustrate bias? First, note that the standard 
deviation of the population is 5, so the variance of the 
population is 25. We said that a statistic is unbiased if the 
mean of its sampling distribution (or its expected value) 
equals the parameter that it estimates. If we look to the 
left of Figures 5.A3.1c and 5.A3.1d, we see that the 
mean of spop

2  is almost exactly 20, and the mean of s2 is 
almost exactly 25. Therefore, spop

2 is biased and s2 is not. 
Finally, in Appendix 5.4 we will see that when a dis

tribution of scores is normal, the distribution of vari
ances (s2) has a variance of 

σ
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and a standard error of
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This means that the standard error of the distribution of 
s2 should be

σ
s n−1
2

2 5 2 25

4
17 68
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. .

On the left of Figure 5.A3.1d [the sampling 
distribution of s2, Var (U)], we see the quantity sd 

= 17.69 (i.e., σ
s2  = 17.69), which is almost exactly 

what our equation says it should be. We will see that 
the most important point about σ

s2 is that it decreases 
as n increases, making estimates of σ2 from large 
samples more precise than estimates from small 
samples.

This outstanding online application offers a tre
mendous number of ways to explore sampling distri
butions. I highly recommend that you use it to check 
many of the points made about sampling distributions 
in Chapter 5.

APPENDIX 5.4: THE DISTRIBUTION OF SAMPLE VARIANCES

The Variance and Standard Error  
of the Distribution of Variances

We saw in Chapter 5 that, like all statistics, s2 has a 
sampling distribution. The mean of this sampling  

distribution is σ2. However, this distribution also has 
a variance. That is, the last column of numbers in  
Table 5.3 has a variance, just like any other column of 
numbers. It just so happens that the numbers in this  

FIGURE 5.A3.1  ■ The Sampling Distribution Demo

This extremely useful tool was written by David Lane at Rice University.

(a)

(b)

(c)

(d)
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column are sample variances. So, the variance in the 
numbers is just the variance of the sample variances.

This idea of the variance of variances might cause 
a headache and vertigo, so let’s stop and think about it. 
If you were given the 16 numbers in the last column of 
Table 5.3 on a midterm and asked to compute the pop
ulation variance, by now you should have no trouble 
doing so. The mean of the 16 numbers is 5. For each 
number in the column, you can compute a squared 
deviation, and then these can be summed. When you 
divide the sum of squared deviations by 16 (the number 
of squared deviations), you have computed the popula
tion variance for these numbers. So, these 16 numbers 
are just numbers and we can compute the population 
variance for any set of numbers. In fact, do this as an 
exercise right now.1 (By the way, this is an example of 
why having Excel open on your computer can be a big 
help; use the VAR.P function shown in Figure 3.A1.1.)

This exercise shows that there is nothing con
ceptually difficult about computing the population 
variance for these numbers, but we might ask a few  
questions. For example, why are we calling the thing 
we computed a population variance? We are com
puting a population variance because these numbers 
represent all possible values of the statistic in ques
tion, because the statistic was computed for all possi
ble samples of size n drawn from our population of N 
scores. So, what is the statistic of interest? The statistic 
of interest is simply the unbiased sample variance, s2. 
This means we’ve computed a population variance (σ2) 
for a sample statistic (s2), so it seems that we should call 
the thing we’ve computed σs2

2 . This is the variance of 
the distribution of sample variances. And that’s not as 
bad as it initially sounded.

The main point to be made in this section is that σ
s2
2  

decreases as sample size increases, just as σm
2  decreases 

as sample size increases. When a population of scores 
is normal, the variance of s2 is given by the following 
equation:

σ
σ

s n2

2
2 22

1
=

−
( )

, (5.A4.1)

as mentioned in Appendix 5.3. You absolutely do not 
have to memorize equation 5.A4.1 and will (probably) 
never be asked to reproduce it. This equation does not 
apply to our small population because it is not normal. 
However, the main point to note in equation 5.A4.1 is 
that the variance of the sample variance ( σ

s2
2 ) depends 

1. The answer is 33.

on both the population variance (σ2) and sample size (n). 
As sample size increases, σ

s2
2 decreases. 

The standard error of s2 is simply the square root 
of equation 5.A4.1 and is therefore denoted σ

s2. Fig
ure 5.A4.1 shows how the standard error of the sam
ple variance (σ

s2) changes with sample size. The solid 
black line plots σ

s2  for sample sizes ranging from 2 to 
128. The population variance in this example is σ2 = 16.  
The filled circles show a subset of sample sizes (i.e., 
2, 4, 8, 16, 32, 64, and 128). As with the sample mean 

2 16 32 64 128
0
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2

FIGURE 5.A4.1 ■ Sample Size and σs2

The distribution from which the samples were drawn had a 
mean of µ = 10 and variance of σ2 = 16. As sample size increases, 
the standard error of the sample variance (σs2) decreases. This 
means that as sample size increases, s2 becomes a more precise 
estimate of σ2.

FIGURE 5.A4.2 ■ Sample Size and Shape

Variance (s2)
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n = 32
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The distribution from which the samples were drawn had a 
mean of µ = 10 and variance of σ2 = 16. The light blue line 
plots the distribution of sample variance for n = 2. The dark 
blue  line plots the distribution of sample variance (s2) for n = 
8. The black line plots the distribution of sample variance for 
n = 32. As sample size increases, the distribution of sample 
variances becomes increasingly normal, as we would expect 
from the central limit theorem. Because s2 is an unbiased 
statistic, the mean of each distribution equals σ2 = 16, the 
parameter that s2 estimates.
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(Figure 5.1), the sample variance s2 becomes a more 
precise estimate of the parameter it estimates (σ2) as 
sample size increases.

The Shape of the Distribution of Variances

From everything we’ve covered so far, you might 
expect the shape of the distribution s2 to be normal. 
However, this is generally not the case. Because the 
sample variance can never be less than 0, the condi
tions are right for the distribution of s2 to be positively 

skewed, which it is. Figure 5.A4.2 shows the sampling 
distribution of s2 for sample sizes of 2, 8, and 32. In all 
cases, the scores were drawn from a normal distribu
tion with mean µ = 10 and variance σ2 = 16. The distri
butions are clearly skewed to the right for sample sizes 
2 and 8. However, as sample size increases, the distri
butions become increasingly normal. If you would like 
to further explore the distribution of sample variances, 
you can spend some time with the sampling distribution 
demo described in Appendix 5.3 (available at sagepub 
.com/gurnsey).

LEARNING CHECK 1

1. The variance of the distribution of variances increases 
as sample size increases. [True, False]

2. What is the expected value of the unbiased sample 
variance?

3. If a normal distribution has a mean of 10 and standard 
deviation of 2, what is the mean of the distribution of 
sample variances if sample size = 8?

Answers

1. False. The variance of the distribution of variances 
decreases as sample size increases.

2.  σ2.

3. Sample size is irrelevant. Because the sample variance 
is an unbiased estimator, the mean of its sampling 
distribution will always equal σ2, which in this case is 4.

Excel Functions Related to the Variance

CHISQ.DIST

The distribution of sample variances is related to the 
c2 distribution. c is the Greek letter chi, which is pro
nounced like the first syllable in kayak. Therefore, c2 
is pronounced chisquared. c2 is a statistic defined as 
follows:

χ
σ

2
2

2
1= −

s n( ). (5.A4.2)

The relationship between c2 and s2 is like the 
relationship between z and m. The sampling distribution 
of s2 can be transformed to the c2 distribution just as 
the sampling distribution of m can be transformed to 
the zdistribution. This means that the proportion of 
sample variances below any given value of s2 is the 
same as the proportion of the c2 distribution below the 
corresponding value of c2. 

The c2 distribution factors out the population vari
ance (σ2) just as the zdistribution factors out the popu
lation mean and variance. Therefore, c2 distributions 
depend only on n–1. When we transform s2 to c2, we can 
use the CHISQ.DIST function to determine the propor
tion of the distribution of variances below s2. We use 
CHISQ.DIST as follows:

CHISQ.DIST(χ2, n–1, cumulative),

which is illustrated in Figure 5.A4.3.

CHISQ.INV

We noted above that the distribution of variances is 
related to the c2 distribution. c2 was defined above as

χ
σ

2
2

2
1= −

s n( ).

With a little rearrangement, we find that

s
n

2

2 2

1
=

−
σ χ

. (5.A4.3)
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With this simple relationship in mind, we can find the 
two values of s2 that enclose the central (1-α)100% of 
the distribution of sample variances, which we’ll call 
sα/2
2 and s

1 2

2

−α/ . First we find the values of c2 that enclose 
the central (1-α)100% of the distribution of c2 (χα/2

2  and 
χ α1 2

2

− / ) and then convert these values to sα/2
2  and s

1 2

2

−α/ .

In Figure 5.A4.4, we’ve entered values for n, σ2, and 
α in cells B2, B4, and B5, respectively. From these val
ues, we’ve computed n-1, α/2, and 1-α/2 in cells B3, 
B6, and B7, respectively. The function CHISQ.INV takes 
two arguments as shown:

CHISQ.INV(P(χ2), n–1).

The first argument is a proportion, P(χ2), which indicates 
the proportion of the c2 distribution below the χ2 value 
of interest. The second argument is n-1. In cell B9, 
we’ve asked CHISQ.INV to return the value of χ2 having 
(α/2)100% of the χ2 distribution below it. We call this  
χα/2
2 . In cell B10, we’ve asked CHISQ.INV to return the 

value of χ2 having (α/2)100% of the χ2 distribution above 
it. We call this χ α1 2

2

− /
.  The values returned are χα/2

2 = 
9.5908 and χ α1 2

2

− /
. = 34.1696. These values are transformed 

to values of sα/2
2 and s

1 2

2

−α/  in cells B12 and B13 using the 
formula in equation 5.A4.3. For this example, we see that 
95% of the distribution of sample variances, for σ2 = 20  
and n = 21, lies in the interval [11.9885, 42.7120].

APPENDIX 5.5: THE DISTRIBUTION OF SAMPLE PROPORTIONS

Many important questions in psychology rely on pro
portions. For example, what proportion of children 
are autistic? What proportion of individuals living in a 
house with a gun die of a gunshot wound? What propor
tion of adults have a phobia? In this section, we will see 
that the distribution of proportions is really a special 
case of the distribution of means.

In the examples given above, we divided our popu
lations into two groups: those who possess some prop
erty (“is autistic,” “died of a gunshot wound,” “has a 
phobia”) and those who do not (“is not autistic,” “did 
not die of a gunshot wound,” “does not have a pho
bia”). Such variables are called dichotomous variables. 
(Dichotomous means “divided into two parts.”) When 
we select an individual from a population and find that 
the individual possesses the property of interest, we 
refer to that outcome as a success. If the individual does 

not possess the property of interest, we refer to that out
come as a failure. 

The number of individuals in a population that 
possess the property of interest can be denoted by  
Nsuccess. The number of individuals in a population that 
do not possess the property of interest can be denoted 
by Nfailure. Because one either has the property or not,  
Nsuccess + Nfailure = N, which is the number of individuals 
(scores) in the population. The proportion of individu
als in a population that possess the property of interest 
can be calculated by dividing Nsuccess by N. We will use 
the symbol π (the Greek letter p) to indicate the propor
tion of individuals in a population possessing the prop
erty of interest:

π =
N

N
success

. (5.A5.1)

Illustration of the c2 distribution c2 = s2/σ2(n-1). In this illustration, 
n = 21, σ2 = 25, and s2 = 30. The proportion of the s2 distribution 
below a given value of s2 is the same as the corresponding 
proportion of the c2 distribution below the corresponding value 
of χ2. Therefore, the proportion of the distribution of s2 below s2 
= 30, when σ2 = 25 and n = 21, is P(χ2) = .7576.

FIGURE 5.A4.3 ■ CHISQ.DIST FIGURE 5.A4.4 ■ CHISQ.INV

Using CHISQ.INV to determine χα/2
2  and χ α1 2

2

− / .  These values 
are transformed to sα /2

2  and s
1 2

2

−α/  in cells B12 and B13.



Chapter 5 • Online Appendices  7

Proportions as Means

Dichotomous variables can be coded with ones (suc
cesses) and zeros (failures). Therefore, each of the N indi
viduals in a population can be assigned a 1 or 0 depending 
on whether they possess the property of interest. If the 
variable y is dichotomous, then we can use the follow
ing equation to define the proportion of individuals in the 
population having the property of interest as a mean:

π = ∑
y
N

, (5.A5.2)

where ∑y = Nsuccess. If the scores in y represent a sample 
of n scores drawn from a population, then we can define 
the sample mean in the same way:

p y
n

= ∑ . (5.A5.3)

Therefore, if y = {1, 0, 1, 0, 1, 1, 0, 1, 1, 1}, then ∑ y = 7 
and π = p = .7.

The Variance in Populations and  
Samples of Dichotomous Variables

The variance in a dichotomous population can be 
defined exactly as any other variance:

σ
π

2

2

=
−( )∑ y
N

. (5.A5.4)

The sample variance can be defined as before:

s
y p
n

2

2

1
=

−( )∑
−

. (5.A5.5)

Let’s continue with a small population of 10 scores,  
y = {1, 0, 1, 0, 1, 1, 0, 1, 1, 1}, with π = .7. Now, when we 
compute the population variance in the usual way, we 
discover something interesting and useful:

σ
π

2

2 2
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So, what’s so interesting and useful here? Well, the 
answer is that 

σ2 = π(1 - π). (5.A5.6)

In this case, σ2 = π(1 - π) = (.7)(.3) = .21. Therefore, the 
variance of a dichotomous population of scores coded 
as 1s and 0s is simply the product of the proportion of 1s 
and the proportion of 0s.

Computing the variance of the sample is just a lit
tle more complicated, because it requires a correction 
factor:

s p p n
n

2 1
1

= −
−

( ) . (5.A5.7)

This is the same correction factor used in Chapter 3 
(equation 3.7c) for the sample variance.

The Sampling Distribution of p

At this point, we can put together a number of points 
that were made in Chapter 5 to understand the sampling 
distribution of p. First, because there are just two values 
of the variable, the distribution of scores is very non
normal. Second, according the central limit theorem, 
the sampling distribution of the mean (i.e., the sampling 
distribution of p) will be a normal distribution if sample 
size is big enough. That is, the distribution of all pos
sible values of the statistic (p), computed from all pos
sible samples of size n, will be a normal distribution if n 
is big enough. Furthermore, we know that the mean of 
the sampling distribution of p will be 

µp = π, (5.A5.8)

and the variance of the distribution will be

σ
σ π π

p n n
2

2 1
= =

−( )
. (5.A5.9)

Therefore, the standard error of the sampling 
distribution of p is 

σ σ
σ π π

p p n n
= = =

−2
2 1( ) . (5.A5.10)

Figure 5.A5.1 illustrates the sampling distribution 
of p for π = .25 and sample size n = 64. Because sample 
size is 64, there are only 65 possible events (values of p) 
because nsuccess can only take on integer values from 0 to 
64. This means that there can only be 65 events defined 
as p = nsuccess/n. Therefore, the sampling distribution 
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must be shown as a histogram (see the bars in  
Figure 5.A5.1). 

The solid black line in Figure 5.A5.1 shows the 
probability density function for a normal distribution 
having a mean of π = .25 and standard error of 

σ π πp n= − = − =( )/ . ( . )/ . .1 25 1 25 64 1919

This normal distribution provides a reasonably good fit 
to the sampling distribution of p. Therefore, we can use 
this normal approximation to answer areaunderthe
curve questions just as we were able to do with sample 
means because, after all, p is a sample mean.

We need to address one point before we look at an 
example problem. The sample size required to make sure 
that the distribution of p is normal depends on π. The 
closer π is to 0 or 1, the larger the sample needs to be. 
Therefore, sample size (n) must be large enough so that 
either nπ  > 15, if π < .5, or n(1-π ) > 15, if π > .5. 

To test whether the normality assumption is met, we 
take the following steps:

Step 1.  Choose π or 1 - π, whichever is smaller. This 
means we’ll choose π if it’s less than .5, and 
we’ll choose 1 - π if π is greater than .5.

Step 2.  Divide 15 by the number you’ve chosen; i.e., 
15/π or 15/(1 - π). 

Step 3.  If this quotient is smaller than your sample 
size, then you can assume that the distribu
tion of p is normal. 

For the case in which π = .25, we would need at 
least n = 15/π = 15/0.25 = 60 individuals in the sample 
to be safe in assuming normality. If π is greater than .5, 
we would need sample size such that n > 15/(1 - π). 

Critical Values of zα/2

Let’s think about a question that is similar to the hypo
thetical jar of jelly beans that we first met in the early 
pages of Chapter 1. In that case, the dichotomous variable 
had values “red” and “not red,” and we wondered about 
the probability that the proportion of red jelly beans in a 
handful would be in a particular interval. We will ask a 
related question about psychology students who are male.

Let’s say that 25% of psychology students are 
male. What two sample proportions enclose 
the central (1-α)100% of the distribution of 
proportions when sample size is n = 1024 and 
α = .05?

Step 1. Calculate zα/2. α/2 = .05/2 = .025; therefore, 
zα/2 = 1.96.

Step 2. Compute the standard error of the propor
tion. We were given that π = .25 and n = 
1024, so we know that 

σ πp = = =(1−π)/n (. )/ . ..25 75 1024 0 01353

Step 3. Compute the two values of p. We use π ± 
zα/2(σp ) to determine our two values of p as 
follows:

p ± zα/2(σp ) = .25 ± 1.96(.01353) = .25 ± .0265 
= [.2235, .2765].

Step 4. State the answer. The interval [.2235, .2765] 
encloses the central 95% of a distribution of 
proportions when π = .25 and n = 1024.

What does this conclusion mean in practical terms? 
It means that if we consider all possible random samples 
of 64 psychology students, then the proportion of male 
students will be between .2235 and .2765 in 95% of 
these samples. 

A Caveat 

You may have noticed that it is impossible to have .2235 
*1024 = 228.864 people because there are no fractional 
people. This imprecision means that our  example is an 
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The bars show the sampling distribution of p for π = .25 
and sample size n = 64. The distribution has a mean of π 
= .25 and a standard error of σ π πp n= − =( )/ . .1 1919  
The continuous black line shows the best-fitting normal 
distribution, which also has a mean of π = .25 and a standard 
error of σp = .1919.

FIGURE 5.A5.1 ■  The Sampling Distribution of p 
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approximation. We will not work through a more pre
cise solution at this point. We can note, however, that 
the precision of our solutions will improve as  sample 

size increases, and questions involving proportions 
(e.g., proportion of a sample of voters preferring a par
ticular party) typically involve large samples.

LEARNING CHECK 1

1. State whether the following statements are true or 
false.

(a) Blue eyes is a dichotomous variable.

(b) The sampling distribution of p is always normal.

2. If π = .35, and n = 100, calculate σp.

3. A recent report showed that the prevalence of the 
human papillomavirus (HPV) in North America 

is 11.3%. What is the probability that, in a random 
sample of 250 North Americans, 10% or more would 
have HPV?

4. If the prevalence of autism spectrum disorder (ASD) 
is 1 in 68 children in the United States, what is the 
probability that, in a random sample of 144 American 
children, 1% or more would have ASD?

Answers

1. (a) True. (b) False. It approaches the normal 
distribution as sample size increases.

2. σp = . ( . )/ . .35 1 35 100 0477− =

 3. σp = .02, z = (.1 - .113)/.02 = -0.65, 1 - P(-0.65) = 
.7419.

*4. σp = .01, z = (.01 - .0147)/.01 = -0.47, 1 - P(-0.47) = 
.6808.

NORM.DIST, BINOM.DIST, and  
HYPGEOM.DIST and the Distribution  
of Proportions in Excel

Figure 5.A5.2 is set up very much like Figure 5.A1.1, 
except that we are now considering a distribution of 
proportions. Figure 5.A5.2 shows how to compute the 
proportion of a distribution of proportions

•• below p1; 

•• below p2;

•• between p1 and p2; i.e., P(p1) - P(p2 ), assuming 
p2 > p1; and

•• outside the interval p1 to p2; i.e., 1 - [P(p1) 
- P(p2)]. 

The mean of this distribution is π = .25. That is, we 
can think of a large population of 1s and 0s, with 25% 
1s and 75% 0s. The variance of this distribution is σ2 
= .25*(1 - .25) = .25*.75 = .1875. This calculation is 
shown in cell B3. To do areaunderthecurve questions, 
we have to compute the standard error of a proportion 
(p), which requires knowing the sample size. For this 

example, the sample size is 64, given in cell B4. The 
standard error of p is σ2 187564 05413/n = =. / . . 
This calculation is shown in cell B5.

A portion of an Excel spreadsheet showing the calculation 
of approximate values of P(p1), P(p2), P(p1) - P(p2), and 1 - 
[P(p1) - P(p2)] when π and n are known.

FIGURE 5.A5.2 ■ NORM.DIST

http://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=0CEcQFjAF&url=http://www.springer.com/cda/content/document/cda_downloaddocument/9783642146626-c1.pdf?SGWID=0-0-45-1173438-p174026866&ei=ioUAVK-FLdHoggS74YLQDQ&usg=AFQjCNEROfPh6MeIM4Fqio6gp-hIlNAgEw
http://www.cdc.gov/ncbddd/autism/data.html
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All remaining calculations are the same as given for 
two sample means. We use NORM.DIST as follows:

NORM.DIST(p, π, σp, cumulative).

Cells B7 and B8 show two proportions, p1 and p2. 
Cell B10 shows the approximate proportion below p1 
= .2, cell B11 shows the approximate proportion below 
p2 = .3, cell B12 shows the approximate proportion 
between p1 and p2, and cell B13 shows the approximate 
proportion outside the interval p1 to p2. Note that the 
calculations in cells B10 to B13 are exactly the same as 
the calculations in these cells when we were considering 
means m1 and m2. The only change is that µ and σm = 
σ/ n  from Figure 5.A1.1 have been replaced with π 
and σp = π π(1  − )/n  in Figure 5.A5.2.

It is important to keep in mind that we are using 
normal distribution approximations to compute proba
bilities associated with proportions. These approxima
tions are imprecise for two reasons. First, distributions 
of proportions are not exactly normal, although they 
do approach normality as sample size increases. The 
second approximation, evident in Figure 5.A5.2, is that 
we are dealing with arbitrary proportions (e.g., .2 and 
.3) even though such proportions may not arise for the 
sample size (n) that we’re working with. In the case of 
n = 64, no number divided by 64 is exactly .2 or exactly 
.3. Despite the inexactness of the normal approxima
tion that we’ve reviewed, it is widely used because 
the approximation improves with sample size, and the 
imprecision is negligible for very large sample sizes. 

There are two exact distributions related to propor
tions. The binomial distribution provides an exact dis
tribution of successes when sampling from a dichoto
mous population with replacement. We use it in Excel 
as follows:

BINOM.DIST(nsuccess, n, π, cumulative).

n is the number of scores (0s and 1s) in a sample, nsuccess 
is the number of successes (1s) in a sample, and π is the 
proportion of successes (1s) in the population. Figure 
5.A5.3 shows how to use the BINOM.DIST  function. 
n, nsuccess, and π are given in cells B2, B3, and B4, 
respectively; for completeness, we’ve computed the 
proportion of successes in our sample as p = nsuccess/n. 
Note, however, that p is not something we provide to 
BINOM.DIST. When cumulative is set to 0 (cell B7), 
BINOM.DIST returns the exact probability of nsuccess 
in a sample of n scores drawn with replacement from 
a dichotomous population with a specified π. When 
cumulative is set to 1 (cell B8), BINOM.DIST returns 
the probability of nsuccess or fewer in a sample of n 

scores drawn with replacement from a dichotomous 
population with a specified π.

The hypergeometric distribution provides an exact 
distribution of successes when sampling from a dichot
omous population without replacement. We use it in 
Excel as follows:

HYPGEOM.DIST(nsuccess, n, πN, N, cumulative). 

n is the number of scores (0s and 1s) in a sample and 
nsuccess is the number of successes (1s) in a sample. N is the 
number of scores in the population and πN is the number 
of successes (1s) in the population. π must correspond to 
some k/N where k is an integer between 0 and N. 

Figure 5.A5.4 shows how to use the HYPGEOM.
DIST function. n and nsuccess are given in cells B2 and 
B3, respectively; for completeness, we’ve computed the 
proportion of successes in our sample as p = nsuccess/n in 
cell B4. π is the proportion of successes in the popula
tion. In this example, we  set N = 1,000,000 and π = .25. 
Therefore, the number of successes in the population 
is πN = 250,000. When cumulative is set to 0 (cell B7), 
HYPGEOM.DIST returns the exact probability of nsuccess 
in a sample of n scores drawn without replacement from 
a dichotomous population of size N with πN successes. 
When cumulative is set to 1 (cell B8), HYPGEOM.DIST 
returns the exact probability of nsuccess or fewer in a 
sample of n scores drawn without replacement from a 
dichotomous population of size N with πN successes.

As population size increases, the hypergeometric 
distribution converges on the binomial distribution. That 
is, they become the same thing. This can be seen when 
we compare cells B7 and B8 in Figure 5.A5.3 with cells 
B9 and B10 in Figure 5.A5.4. Remember, in this case, the 

FIGURE 5.A5.3 ■ BINOM.DIST 

We use BINOM.DIST to determine the exact probability of 
nsuccess in a sample of n scores drawn with replacement from 
a dichotomous population with a specified π. BINOM.DIST 
(p) refers to this probability. To compute the proportion (P) 
of the distribution at or below nsuccess, we set cumulative to 1. 
BINOM.DIST (P) refers to this probability.
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population contains 1,000,000 scores. When the popu
lation contains a small number of scores, the binomial 
and hypergeometric distributions diverge. This is shown 
in Figure 5.A5.5. In this case, the population contains 
only N = 100 scores, while π = .25. We can now see this 
divergence when we compare cells B7 and B8 in Figure 
5.A5.3 with cells B9 and B10 in Figure 5.A5.5.

BINOM.INV in Excel

The BINOM.INV function in Excel takes the following 
arguments:

BINOM.INV(n, π, P(nsuccess)). 

n is the number of scores in the sample, π is the 
proportion of successes in the population, and P(nsuccess) 
is the proportion of the binomial distribution at or below 

the value of nsuccess that we’d like to obtain. BINOM.INV 
returns the smallest value of nsuccess for which the cdf 
of the binomial distribution is greater than or equal to 
P(nsuccess ). We can use BINOM.INV to determine the 
two values of nsuccess such that approximately (α/2)100% 
of the binomial distribution lies at or below one value 
and approximately (α/2)100% of the distribution lies at 
or above the other. This means that (1-α)100% of the 
distribution lies between the two numbers. We can refer 
to these two values of nsuccess as nsuccess(α/2) and nsuccess(1-α/2). 
We can then convert them to proportions by dividing 
them by n, the number of scores in the sample.

In Figure 5.A5.6, n, π, and α have been entered in cells 
B2 to B4. Cell B5 computes the proportion of the binomial 
distribution within the interval of interest. We’ve computed 
α/2 in cell B6. We want to find the value of nsuccess(α/2) such 
that P(nsuccess ) = α/2. This is accomplished in cell B9 using 
BINOM.INV. The exact proportion of this binomial distri
bution (n = 64, π = .25) below 9 is .02524. Therefore, this is 
what we mean when we say BINOM.INV returns the small
est value of nsuccess for which the cdf of the binomial distri
bution is greater than or equal to P(nsuccess ). [The exact pro
portion of this binomial distribution (n = 64, π = .25) below 
8 is .01113, which is not greater than α/2 = .025.]

In cell B7, we’ve computed 1-α/2. We now want to 
find the value of nsuccess(1-α/2) such that P(nsuccess) = 1-α/2. 
This value of nsuccess, computed in cell B10, has approxi
mately (1-α/2)100% of the binomial distribution below 
it and (α/2)100% of the binomial distribution above it. 
These two values of nsuccess are divided by sample size 
(n) in cells B12 and B13 to produce pα/2 and p1-α/2. For 
this example, approximately 95% of the distribution of 
proportions lies between .1406 and .3594.

FIGURE 5.A5.4 ■ HYPGEOM.DIST

We use HYPGEOM.DIST to determine the exact probability 
of nsuccess in a sample of n scores drawn without replacement 
from a dichotomous population of size N having πN successes. 
HYPGEOM.DIST (p) refers to this probability. To compute 
the proportion (P) of the distribution at or below nsuccess, we set 
cumulative to 1. HYPGEOM.DIST (P) refers to this probability.

FIGURE 5.A5.5 ■ HYPGEOM.DIST

Illustration of the hypergeometric distribution when the 
population size is only N = 100.

FIGURE 5.A5.6 ■ BINOM.INV

Using BINOM.INV to determine the sample score [nsuccess(α/2)] 
having (α/2)100% below it and the sample score [nsuccess(1-α/2)] 
having (α/2)100% above it. nsuccess(α/2) and nsuccess(1-α/2) are 
converted to proportions by dividing them by n (sample size).


