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APPENDIX 6.2: PROOF THAT m ± zα/2(σm) WILL CAPTURE µ (1-α)100% OF THE TIME

The purpose of this appendix is to show that m ± zα/2(σm) 
will capture µ (1-α)100% of the time, no matter what 
the population mean and standard deviation are or what 
the sample size is. The only assumption here is that the 
distribution of means is normal.

We saw in Chapter 6 that any sampling distribution 
of the mean can be transformed to the z-distribution by 
applying the following transformation to each sample 
mean:

z m

m

=
−µ
σ

.

We then stated that (1-α)100% of all possible intervals 
computed as

m ± zα/2(σm )

will capture µ. So, let’s see why this is true.
By definition we know that (1-α)100% of the 

z-distribution lies in the interval ±zα/2. We can express 
this as

Pr(-za/2 < z < za/2) = 1-a. (6.A2.1)

Equation 6.A2.1 should be read as follows: The 
probability that a randomly chosen z-score will fall in 
the interval ±z

α/2 is 1-α.
Here, we will concentrate on the inequality within 

the colored parentheses in equation 6.A2.1 (-zα/2 < z < 
zα/2 ), and we will show that it can be rearranged into 
a more familiar form without changing its meaning. 
The colored text will be retained to remind us that the 
following transformations do not change the meaning 
of what is inside the parentheses.

If we insert the definition of the z-score into 
equation 6.A2.1, we obtain the following:
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Multiplying all three terms by σm leaves us with this:

Pr(-za/2(sm)< m - m < za/2(sm)) = 1-a. (6.A2.3)

If we then subtract m from all three terms, we are left 
with the following:

Pr(-za/2(sm) - m < -m < za/2(sm) - m) = 1-a. (6.A2.4)

This transformation leaves –µ in the center of the 
inequality. If we now multiply all three terms by –1 (to 
make µ positive) and reorder the terms, we obtain

Pr(m + za/2(sm) > m > m - za/2(sm)) = 1-a. (6.A2.5)

Because we multiplied by -1, the directions of the 
inequality signs changed. For example, if we multiply 
all three numbers in this inequality 1 < 2 < 3 by -1, 
then we would obtain -1 > -2 > -3. Equation 6.A2.5 
shows that µ is between m + zα/2(σm ) and m - zα/2(σm ) 
(1-α)100% of the time. In other words, the result we’ve 
obtained says that the probability is 1–α that the interval

m ± zα/2(σm)

will contain µ. We can state this as follows:

Pr(m is in m ± za/2(sm)) = 1-a.

This means that for (1–α)100% of all sample means, the 
interval m ± zα/2(σm ) will capture µ no matter what µ and 
σ are or what n is. This is a really nice result.

APPENDIX 6.3: PRECISION PLANNING AND THE MARGIN OF ERROR

Throughout Chapter 6, we’ve noted that the width 
of a confidence interval depends on sample size. All 
things being equal (i.e., σ and α fixed), the width of a 
confidence interval decreases as sample size increases. 
Because sample size is chosen by the researcher, we have 
considerable control over the precision of the estimates 
that we make. Of course, we could make very precise 
parameter estimates if our sample sizes were in the 
thousands. However, practical considerations always 

enter into research, and it would be expensive and time-
consuming to obtain extremely large sample sizes for 
each estimate we wish to make. For example, we may 
need to pay research assistants to contact participants 
and make the measurements that interest us. In addition, 
we may have to spend a long time administering tests to 
each member of our sample, as in the case of measuring 
IQ. Therefore, before we make any measurements, we 
should ask ourselves how precise we would like our 
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measurements to be and then determine the sample size 
required to achieve the desired level of precision.

Margin of Error

The definition of a confidence interval for a mean is 
often expressed as m ± moe, where moe stands for mar-
gin of error. When σ is known, the margin of error for a 
sample mean is zα/2(σm). Therefore, the moe depends on 
σ, α, and n. If we choose to compute the 95% confidence 
interval when σ is known, the only thing we have avail-
able to adjust moe is n.

In which units should we express our desired 
precision for the moe? A straightforward approach is to 
express precision in terms of σ. For example, we might 
wish the moe to be f * σ, where f could be any number 
greater than 0. Although f can be any number greater 
than 0, we will see that only numbers less than 1 are 
useful and those too close to 0 are impractical.

Let’s state formally that
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If we would like moe to be f * σ, then we can rewrite 
equation 6.A3.1 as follows:

f z
n

*
( )
./σ

σα= 2 (6.A3.2)

A little manipulation of equation 6.A3.2 will show 
us what sample size we need to achieve our desired 
moe. Multiplying both sides of equation 6.A3.2 by n  
moves it over to the left.

n *f * s = za/2(s). (6.A3.3)

Because σ appears on both sides of equation 6.A3.3, we 
can simply divide both sides by σ to get

n * f = za/2. (6.A3.4)

This is really interesting because σ has disappeared 
from our definition of f. When we now divide both sides 
of equation 6.A3.4 by f, we find that n  is completely 
defined in terms of zα/2 and f:

n = za/2/f. (6.A3.5)

Squaring both sides will give us what we want:

n = (zα/2/f )2. (6.A3.6)

Equation 6.A3.6 shows that it is very simple to 
determine the sample size required to achieve an moe 
that is expressed as some fraction ( f ) of σ.

If we consider a few examples, we’ll be able to see 
how this works. For all of these examples, we’ll let  
α = .05 so that zα/2 = 1.96. Let’s say we want moe = σ. 
In this case, f = 1. Therefore, equation 6.A3.6 tells us 
that n = (1.96/1)2 = 1.962 = 3.84 (rounded to two decimal 
places). Of course, it’s not possible to have a sample of 
3.84 individuals, so we will always round to the next 
integer (i.e., 4 in this case). Therefore, to achieve an moe 
equal to the population standard deviation, we would 
need 4 scores in our sample. You can imagine that a 
sample of 4 scores would produce a rather imprecise 
estimate of µ. Therefore, values of f greater than or 
equal to 1 are not useful.

Let’s say we want moe = σ/4. In this case, f = .25. 
Therefore, equation 6.A3.6 tells us that n = (1.96/.25)2 
= 7.842 = 61.46 (rounded to two decimal places). Once 
again, we round up to the next integer to get a sample 
size of n = 62. Therefore, to achieve an moe equal to 
one-quarter of the population standard deviation, we 
would need 62 scores in our sample.

As a final example, let’s say we want moe = σ/10. In 
this case, f = .1. Therefore, equation 6.A3.6 tells us that 
n = (1.96/.1)2 = 19.62 = 384.16 (rounded to two decimal 
places). Rounding up to the next integer gives a sample 
size of n = 385. Therefore, to achieve an moe equal to 
one-tenth of the population standard deviation, we 
would need 385 scores in our sample.

As f approaches 0, the sample size required to 
achieve an moe equal to f * σ increases very quickly. 
You can verify this by finding the sample size required 
to obtain an moe equal to .001 * σ. This is why values of 
f close to 0 are impractical.

Planning a Study

When we plan a study, we have competing needs. On 
the one hand, we want to have the most precise measure 
possible; on the other hand, greater precision generally 
entails increased cost. If an extremely precise measure 
is required but obtaining it is prohibitively expensive, it 
would make no sense to try to make do with a smaller 
sample that would produce less precision than required.

To make these concepts more concrete, we’ll 
consider a situation in which money is at stake. 
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First, imagine that the Prescott Pharmaceutical 
Company (PPC) is working on a drug to improve 
attentional focus (AF) in adolescents with attention 
deficit disorder (ADD). Because they don’t have the 
resources to conduct this research in-house, PPC 
offers you a contract to do this research. They require 
an estimate, with 95% confidence, of the mean AF in 
the population of all adolescents. They also require 
the moe to be σ/10. (Although they haven’t told you 
why they need such a precise measurement, we can 
assume that they have good reasons.) Because PPC has 
contracted many similar studies in the past, they can 
tell prospective researchers that σ = 25. PPC offers 
you a contract of $50,000 to do this research. You 
consider this offer because you have statistics training. 
With a little research of your own, you find that it will 
cost you $95.00 to obtain an AF measure from each 

participant in your study. The $95.00 covers all costs 
involved, including lab work, research assistant pay, 
transportation, and so forth. Would it be worth your 
while to accept this contract?

To answer this question, you would need to know 
whether it would cost you more than $50,000 to get 
the measurement required by PPC. Therefore, you 
must determine the number of participants needed to 
achieve an moe of σ/10 for a 95% confidence interval. 
Given your expertise, you know that the number of 
participants required is n = (zα/2/f )2. Because you know 
that zα/2 = 1.96 and f = .1, you are able to determine that 
you would need 385 participants to achieve the required 
moe of σ/10. Therefore, your cost would be 385 * $95 
= $36,575. Your profit would be $50,000 - $36,575 
= $13,425. That’s not bad, so you might consider 
accepting this contract.


