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APPENDIX 10.4: PLANNING THE MARGIN OF ERROR

Specifying the Desired Margin of Error

We saw in Appendix 6.1 that researchers have a great 
deal of control over the moe in a confidence interval. 
When σ is known, the sample size required to obtain 
an moe of f * σ is n = (za/2/f  )2. We use this approach to 
control precision (moe) when σ is not known but there 
are some slight complications.

We spent a long time explaining the difference 
between za/2 and ta/2 in Chapter 10. Therefore, it should 
not be surprising that computing the sample size (n) 
required to obtain an moe of f * σ involves replacing za/2 
with ta/2 as follows:
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(10.A4.1a)

That’s the good news. The bad(ish) news is that ta/2 
depends on df, which in turn depends on n. Equation 
10.A4.1b makes this explicit by adding n−1 as a sub-
script to ta/2 as follows:
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Therefore, thinking back to algebra, we recognize 
that we have n defined in terms of a ta/2 value that itself 
depends on n, making it impossible to solve for n with 
the usual tools of algebra.

What should we do? There are interesting meth-
ods that will allow us to calculate the exact sam-
ple size required to achieve our margin of error. 
Such methods take us beyond what is necessary for 
the purposes of this chapter. Fortunately, there is a 
simple approximation that works reasonably well 
if the required f is less than 1. (We noted in Appen-
dix 6.1 that no useful f is greater than 1.) If we were 
to perform the exact calculation of n for values of f 
between .1 and 1, we would find that the required n is 
always just 2 or 3 greater than the n we’d get by using 
n = (za/2/f )2. Therefore, we can simply compute n = 
(za/2/f )2 and then add 3 to get a good approximation to 
the correct answer.

Planning a Study 

Let’s reconsider the case of the Prescott Pharmaceuticals 
Company (PPC) from Appendix 6.3 (available online at 
study.sagepub.com/gurnsey). PPC wished to estimate, 
with 95% confidence, the mean attentional focus (AF) 
in adolescents with attention deficit disorder (ADD). 
They also require the moe to be σ/10; i.e., f = .1. They 
offered $50,000.00 to someone to carry out this study, 
and your research showed that it would cost $95.00 per 
subject to conduct the analysis. The $95.00 covers all 
costs involved, including lab work, research assistant 
pay, transportation, and so forth. Would it be worth 
your while to accept this contract?

To figure out how much profit you would make if you 
were to accept this contract, you need to determine the 
number of participants required to achieve the required 
moe. You start by estimating the number that would be 
required if σ were known. As before, you find that you 
would need 385 participants. The approximate method 
that we just described leads you to add 3 to this total. 
Therefore, you estimate you will need 388 participants. 
(An exact method would tell you that you need 387 
participants to achieve an moe of σ/10.) Therefore, you 
would make only $285.00 less this time around than you 
did when σ was known, because this time you would 
need three more participants at a cost of $95.00 each.

A Caveat

You may have noticed that we’ve ignored a complica-
tion that distinguishes planning when σ is known from 
planning when σ is not known. Specifically, we stated 
that our desired moe was σ/10 in the preceding exam-
ple. However, Figure 10.3 shows that the moe is differ-
ent from sample to sample. Therefore, how is it possible 
that the sample size we computed using the method 
described above guarantees an moe of σ/10? The short 
answer is that it doesn’t. Rather, our calculations pro-
duce a sample size that will have an moe of σ/10 on aver-
age. Because moe differs from sample to sample, the 
moe associated with a given sample might be slightly 
larger or smaller than the moe we wished to obtain.

The solution to this problem is to find a sample size that 
is large enough that only a small proportion of moe values 
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would be greater than the one we desire. In the example 
we’ve been considering, we might want to find a sample 
size (n) such that only 1% of moe values would be greater 
than σ/10. We won’t discuss how to achieve this level of 
assurance at this point. There is a very good discussion of 
this in Cumming (2012) if you would like to know more.
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APPENDIX 10.5: PROOF THAT m ± tα/2(sm) WILL CAPTURE µ (1−α)100% OF THE TIME

The purpose of this appendix is to show that m ± tα/2(sm ) 
will capture µ (1−α)100% of the time, no matter what the 
population mean and standard deviation are or what sample 
size is. The only assumptions here are that the samples are 
randomly drawn from the same normal distribution.

We saw in Chapter 10 that any distribution of means 
can be transformed to a t-distribution by applying the 
following transformation to each sample mean:

t m
sm

=
−µ . 

We then stated that (1−α)100% of all possible intervals 
computed as

m t sm± ( )α /2

will capture μ. So, let’s see why this is true.
By definition we know that (1−α)100% of the t- 

distribution lies in the interval −ta/2 to ta/2. We can 
express this as

Pr(−ta/2 < t < ta/2) =1−a. (10.A5.1)

As before, equation 10.A5.1 should be read as 
follows: The probability that a randomly chosen t-score 
will fall in the interval ±ta/2 is 1−α.

We will now show that the inequality (−ta/2 < t 
< ta/2 ) can be rearranged into a more familiar form 

without changing its meaning. The colored text will 
be retained to remind us that the following transfor-
mations do not change the meaning of what is inside 
the parentheses.

When we insert the definition of the t-score into 
equation 10.A5.1, we obtain the following:
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Multiplying all three terms by sm leaves us with this:

Pr(−ta/2(sm) < m − m < ta/2 (sm)) =1−a. (10.A5.3)

If we then subtract m from all three terms, we are left 
with the following:

Pr(−ta/2(sm) − m < −m < ta/2 (sm) − m) =1−a. (10.A5.4)

This transformation leaves −m in the center of the 
inequality. If we now multiply all three terms by −1 (to 
make μ positive) and reorder the terms, we obtain

Pr(m + ta/2(sm) > m > m − ta/2 (sm)) =1−a. (10.A5.5)

Equation 10.A5.5 shows that μ is between m + tα/2(sm ) 
and m − tα/2(sm ) (1−α)100% of the time. In other words, 
the probability is 1−α that the interval m ± tα/2(sm ) will 
contain μ.

APPENDIX 10.6: G*POWER

There are many fabulous statistical tools that are freely 
available on the web. One of the best is G*Power, which can 
be downloaded from gpower.hhu.de/en.html. G*Power 
does many things, but our focus here will be on determining 
the sample size required to achieve a desired level of power 
for the one-sample t-test described in Chapter 10.

Using G*Power

When you launch G*Power, you will be presented with 
the dialog shown in Figure 10.A6.1. (The default set-
tings will be different from those in Figure 10.A6.1.) I 
will step through these settings so that you can see how 

to do a prospective power analysis. There are five pan-
els in Figure 10.A6.1 that we’ll discuss in detail: Test 
family, Statistical test, Type of power analysis, Input 
parameters, and Output parameters. Before we begin, 
make sure that Central and noncentral distributions are 
selected in the top panel.

Test Family

Power is an issue for many experimental and non-
experimental designs. Therefore, in the box titled Test 
Family, there is a drop-down list that will allow you to 
choose the type of test of interest. I’ve selected t tests 
from this list.
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Statistical Test

To the right of the Test Family drop-down list, there is 
a second drop-down list under the heading Statistical 
Test. As we’ll see, there are many different t-tests we 
can perform. I’ve chosen Means: Difference from con-
stant (one sample case), which describes the test we’ve 
been discussing.

Type of Power Analysis

To compute the required sample size for a given effect 
size, we must select the appropriate type of power anal-
ysis. For our purposes, the correct selection from the 
drop-down list is A priori: Compute required sample 
size - given α, power, and effect size.

Input Parameters

The region in the bottom left of Figure 10.A6.1 titled 
Input parameters allows you to specify the number of 
tails in the test, the effect size of interest, a, and power.  
You will see that I’ve chosen to compute the sample 
size required for a one-tailed test, with effect size (δ) = 
0.1, α = .05, and power = .8. Once you’ve entered these, 

press the  button and G*Power will begin 
searching for the required sample size. 

Output Parameters

The results are shown in the bottom right of Figure 
10.A6.2 in the region labeled Output parameters. The 
first output parameter is called the non-centrality 
parameter. In G*Power, the non-centrality parameter is 
denoted with the Greek symbol δ; this is not Cohen’s δ. 
We will say a few things about the non-centrality param-
eter in the next section, but for now we’ll ignore it. Critical 
t corresponds to what we called tcritical in Chapter 10.  
The sample size required for the specified input param-
eters is 620, and the degrees of freedom is therefore 619. 
We were aiming to have power = .8; G*Power has found 
that when sample size is 620, the actual power is .8002.

So, that’s pretty simple. You only need to know δ, 
α, and the power you would like to have (along with 
your alternative hypothesis) and G*Power delivers the 
required sample size instantly.

FIGURE 10.A6.1 ■ The G*Power Dialog

Settings of G*Power to determine the sample size to achieve 
the desired 80% power for a one-tailed, one-sample t-test when 
δ = .1 and α = .05.

 

G*Power has computed the sample size required to achieve 
80% power for a one-tailed, one-sample t-test, when δ = .1 
and α = .05.

FIGURE 10.A6.2 ■ G*Power Results 
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**The Non-central t-Distribution

Let’s now return to the non-centrality parameter, which 
G*Power denotes as δ, but I’ll call ncp. To understand 
the ncp, we need to think about the distribution of 
our test statistic (tobs ) when the null hypothesis is true 
and when it is false. In Chapter 10, we introduced the  
t-statistic defined as

t m
s n

=
−µ

0

/
. (10.A6.1)

When m is drawn from a distribution with mean μ0, 
then the result is a central t-distribution based n−1 
degrees of freedom. The mean of this distribution is 0, 
and this is the reason we call it a central t-distribution: 
the distribution is symmetrical and centered on 0. In the 
top panels of Figure 10.A6.2, the distribution to the left 
is a central t-distribution with n−1 degrees of freedom. 
This is the sampling distribution of tobs when the null 
hypothesis is true.

In prospective power analysis, we have to think 
about the distribution of the test statistic (tobs ) described 
in equation 10.A6.1 when the alternative hypothesis 
is true. This means computing the statistic described 
in equation 10.A6.1 when samples are actually drawn 
from a distribution having a mean μ1. The resulting dis-
tribution is a non-central t-distribution, which is shown 
as the curve to the right in the top of Figure 10.A6.2. 
This is the density function we obtain when we form all 
samples of size n from the distribution of scores under 
the alternative hypothesis and compute the statistic 
shown in equation 10.A6.1. The proportion above the 
non-central t-distribution above tcritical is power.

To appreciate what is happening here, remember that 
the samples were drawn from a distribution with mean μ1 
but the statistic was computed with m − μ0 in the numera-
tor. The consequence is not a central t-distribution shifted 
along the x-axis but a skewed distribution shifted along 
the x-axis. The exact shape of a non-central t-distribution 
depends on the effect size (Cohen’s δ) and df.

Note that μ1 and μ0 don’t appear anywhere in Figure 
10.A6.2 because they are unnecessary. The figure con-
veys the non-central t-distribution for all combinations 
of μ1, μ0, and σ for which δ = (μ1 − μ0)/σ. These distribu-
tions have uses far beyond computing the power of a 
significance test. For example, when we compute exact 
confidence intervals for d in R, we are making use of 
non-central t-distributions.

Figure 10.A6.3 shows a second example of a non-
central t-distribution for a case in which δ = 2. Here, 
the distribution shows much greater right skew and is 

FIGURE 10.A6.3 ■ Non-central t-Distribution

G*Power has computed the sample size required to achieve 
80% power for a one-tailed, one-sample t-test, when δ = 2 
and α = .05.

shifted farther along the x-axis; compare the scales of 
the x-axes in Figures 10.A6.2 and 10.A6.3. Non-central 
t-distributions are defined by degrees of freedom (df ) 
and the non-centrality parameter (ncp).

As a final note, in the situation we’re considering, 
there is a very simple relationship between the non-
centrality parameter (ncp), Cohen’s δ, and sample size:

ncp n= δ . (10.A6.2)

(Remember, G*Power calls the non-centrality param-
eter δ.) In Figure 10.A6.2, we had effect size (δ) = .1 and 
n = 620. Therefore,

ncp n= = =δ .1 620 2 4899799. ,

as shown in Figure 10.A6.2. In Figure 10.A6.3, we had 
effect size (δ) = 2 and n = 4. Therefore,

ncp n= = =δ 2 4 4,
as shown in Figure 10.A6.3.


