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APPENDIX 11.3: PROVING THE GENERALITY OF (m1 - m2) ± ta/2(sm1 – m2
)

The derivation in this appendix has been shown in the 
appendixes of Chapters 6 and 7. The only thing that 
changes here is the way that t is calculated. (This is the 
last of these derivations that we’ll consider.)

By definition we know that (1-α)100% of the t- 
distribution lies in the interval -tα/2 to tα/2. We can 
express this as

Pr(-ta/2 < t < ta/2) = 1-a. (11.A3.1)

If we insert the definition of t into equation 11.A3.1, we 
obtain the following:
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Multiplying all three terms by sm m
1 2

-  and then subtracting 
m1 - m2 from all three terms leaves us with this:
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< ta/2
( )sm m1 2-  - (m1 - m2)) = 1-a.

(11.A3.3)

This transformation leaves − −µm m1 2
in the center of the 

inequality. If we now multiply all three terms by –1 (to 
make µm m
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−  positive), we obtain
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When we rearrange the statistic m1 – m2 and the margin 
of error tα/2(sm m

1 2
- ), we obtain
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(11.A3.5)

Equation 11.A3.5 shows that

( ) ( )/m m t sm m1 2 2 1 2
− −± α (11.A3.6)

will contain µm m1 2− , with probability 1-α. This means 
that µm m

1 2
−  will be within (1-α)100% of intervals 

computed as ( ) ( )/m m t sm m1 2 2 1 2
− −± α .

The beauty of this small demonstration is the gener-
ality of what it shows. No matter what n1, n2, µ1, µ2, and 
σ2 are, (1-α)100% of confidence intervals computed as 
in equation 11.A3.6 will capture µm m1 2− .

APPENDIX 11.4: WELCH-SATTERTHWAITE CORRECTION FACTOR

In Chapter 11, we discussed using the t-distribution 
when we are able to assume that σ σ

1

2

2

2= . When we are 
not able to make this assumption, then there is good and 
bad news. The good news is that we compute sm m1 2-  as 
follows:
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That’s pretty straightforward. More good news is that 
the sampling distribution of
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will be a t-distribution. The bad news is that it will 
not be associated with n1 + n2 - 2 degrees of freedom. 
Rather, an adjustment to the degrees of freedom must 

be made to account for this change, and the needed 
equation is a little complex:
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We call the adjusted degrees of freedom dfWS because 
equation 11.A4.2 is called the Welch-Satterthwaite 
correction factor, after the statisticians who developed 
it. The effect of the correction is to reduce the degrees of 
freedom somewhat. Reducing the degrees of freedom 
makes tα/2 larger than it would otherwise be.

We will reexamine the data from the riddle study 
described in Chapter 11 (Table 11.3 is reproduced in 
Table 11.A4.1) without the assumption that σ σ
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From this information, we can compute sm m1 2-  as follows:
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To put a confidence interval around the difference 
between the two means, we would have to adjust the 
degrees of freedom associated with tα/2. This requires 
evaluating the Welch-Satterthwaite correction as follows:
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Please note that s4 is the square of the variance, s2. That 
is, s4 = (s2)2. 

The tα/2 value associated with dfWS cannot be taken 
from the t-table because there are fractional degrees of 
freedom. In addition, although the T.INV.2T function in 
Excel accepts fractional degrees of freedom, it simply 
ignores the fractional part and rounds down to the next 
integer; this is not much help. Fortunately, R allows us 
to compute tα/2 for fractional degrees of freedom. Typ-
ing the following command into R,

qt(p = .975, df = 19.08),

yields tWS = 2.09243, which is slightly larger than the 
2.086 that we would have obtained with 11 + 11 - 2 = 20 
degrees of freedom. The Welch-Satterthwaite corrected 
95% confidence interval around the difference between 
the two means will be

CI = (m1 - m2) ± tWS 
( )sm m1 2-  

= (12 - 9) ± 2.09243(1.9069) 
= [-0.99, 6.99].

In general, the Welch-Satterthwaite correction for 
unequal variances will increase the width of our con-
fidence intervals. However, the extent of the increase 
depends on the size of the difference between the two 
sample variances; the larger the difference, the greater 
the increase. If sample variances and sample sizes are 
identical, then there will be no correction to the degrees 
of freedom.

APPENDIX 11.5: PLANNING THE MARGIN OF ERROR

Specifying the Desired Margin of Error

We saw previously that when estimating µ when σ is 
known, the sample size required to obtain an moe of f * σ is

n = (za/2/f )2.

When estimating µ when σ is unknown, we can use the 
same formula but add 3 to n, to get the approximate sample 
size needed to achieve an moe that is f * σ, on average.

We are now faced with determining the required 
sample size to achieve an moe of f * σ when there are two 
independent groups of scores. As before, the solution is 
very easy if we can tolerate slight imprecision. To deter-
mine our required sample sizes, we will assume two 
groups of equal size, drawn from distributions having 
the same standard deviation, σ. To achieve an average 
moe of f * σ, both groups should have a sample size of

n = 2(za/2/f )2
 + 1.

If we would like to achieve a precision of .2 * σ, for 
example, then we would need to have

n = 2(za/2/f )2
 + 1 = 2(1.96/.2)2 + 1 = 193.08

scores in each sample. Of course, 193.08 scores would 
be difficult to obtain, so we round up to 194.

Planning a Study

In previous chapters, we considered the Prescott 
Pharmaceuticals Company’s (PPC) interest in atten-
tional focus (AF) in adolescents with attention deficit 
disorder (ADD). They now wish to test a new drug 
aimed at improving AF scores in adolescents with 
ADD. Their study will have two independent groups. 

TABLE 11.A4.1  ■  Riddle Study Data

Quiet (q) Noisy (n)

n 11 11

m 12 9

s2 24.4 15.6
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One group will be adolescents with ADD who receive 
no treatment, and the other will be adolescents with 
ADD who undergo 4 months of treatment with a new 
drug. PPC would like the precision of their 95% confi-
dence interval to be .1(σ), on average (i.e., f = .1).

They offered $50,000.00 for someone to carry out 
this study, and your research showed that it would cost 
$95.00 to obtain AF scores from each adolescent. To fig-
ure out how much profit you would make if you were to 
accept this contract, you need to determine the number 
of participants required to achieve the desired moe. You 
start by estimating the number that would be required if 
σ were known then add 1 to the result. When we fill num-
bers into the expression above we obtain the following:

n = 2(za/2/f )2
 + 1 = 2(1.96/.1)2 + 1 = 769.32.

Again, we need to round up to 770 to achieve a whole 
number. So, we need 770 individuals in each group for 
a total of 1,540. At a rate of $95.00 per measure, it would 
cost you 1,540 * $95 = $146,300.00 to conduct the study. 
It would be a very bad idea to accept this contract.

Precision Implied by Sample Size

Now that we know how to derive the sample size 
required to achieve a desired precision, we can turn this 

around and ask what precision we achieve with a given 
sample size, n = n1 = n2. The following formula provides 
this answer:
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In the riddle example from Chapter 11, we noted that 
the precision of the 95% confidence interval around  
m1 - m2 was f = 0.88. This was calculated as 
follows:
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We can look at this slightly differently and ask about 
the relationship between the margin of error, moe = tα/2 
(sm m1 2- ), and our best estimate of σ, which is spooled. In 
the riddle example, tα/2(sm m

1 2
- ) = 3.98 and spooled = 4.47. 

Therefore, an estimate of f is given by
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Both methods show that our estimate is rather 
imprecise, with the margin of error being close to a full 
standard deviation, σ.

APPENDIX 11.6: USING G*POWER TO COMPUTE POST HOC POWER AND SENSITIVITY

Prospective power analysis is conducted before running 
an experiment or quasi-experiment to determine the 
sample size required to have a high probability of 
rejecting the null hypothesis for a given effect size, δ. 
Unfortunately, power calculations are rarely conducted 
before running an experiment. However, in a sort of 
postmortem, researchers may ask about the power of 
their experiment based on data they’ve collected. This 
postmortem requires assuming that d is equal to δ.

In Figure 11.A6.1, we use G*Power to estimate the 
power of our experiment, assuming d equals δ. We will 
work with the riddle experiment from Chapter 11, in 
which there were 11 participants in each group and δ 
was estimated to be d = .67. Figure 11.A6.1 shows that 
we have  chosen t-tests from the drop-down list under 
Test family. From the drop-down list under Statistical 
test, we have chosen Means: Difference between two 
independent means (two groups), which is the topic of 
this chapter. The Type of power analysis is Post hoc: 
Compute achieved power - given α, sample size, and 
effect size. “Post hoc” is the Latin term for “after the 
event.” So, after the experiment has been run, we’re 

trying to determine the power of the experiment assum-
ing that δ = d. Therefore, in the Input parameters panel, 
we describe the experiment as one-tailed, with an effect 
size of .67, α = .05, and the two sample sizes as 11. When 
we click on the  button, G*Power performs 
its calculations and shows that the power of the experi-
ment is approximately .45. That is, if δ really were equal 
to .67, then the experiment we’ve run would only reject 
the null hypothesis 45% of the time when two samples 
are drawn from two distributions whose means are sep-
arated by δ = .67.

We can also ask the following: for a one-tailed test 
with α = .05 and n1 = n2 = 11, what would δ have to be to 
yield power = .8? This question addresses the sensitiv-
ity of the experiment. The smaller the effect size that 
can yield power(100)% correct rejections of the null 
hypothesis, the more sensitive the test. The sensitivity 
of the test can be determined using G*Power as shown 
in Figure 11.A6.2.

We have chosen t-tests from the drop-down list under 
Test family, and we chose Means: Difference between two 
independent means (two groups) from the drop-down list 
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under Statistical test, just as in Figure 11.A6.1. The Type 
of power analysis is Sensitivity: Compute required effect 
size - given α, sample size, and effect size. Therefore, in 
the Input parameters panel, we describe the experiment 
as one-tailed, with power = .8, and the two sample sizes as 
11. When we click on the  button, G*Power 

performs its calculations and shows the value of δ 
required to achieve the desired power. The analysis shows 
that our experiment would require δ = 1.1 to achieve 
power = .8. Therefore, one might say that our hypothetical 
experimenter’s choice of sample size implies that she was 
interested in effect sizes of 1.1 or greater.

FIGURE 11.A6.2  ■  Sensitivity Computations

 

FIGURE 11.A6.1  ■  Post Hoc Power Computations

 


