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APPENDIX 14.3: MORE ON σest

Chapter 14 provided the following definitions of σest:

σ
est

error=
ss
N

 

and

σ ρ σ
est
= −( )1

2 2

y .

We will now see why these are equivalent.
In Chapter 13, we stated that the total variability 

in the distribution of y-scores can be captured by ssy, 
which can also be called sstotal. The following defini-
tions were introduced in Chapter 13 using the statistics 
of samples and are rewritten here in terms of population 
parameters. In a population, we define sstotal (or ssy ) as

sstotal = ∑(y - my)
2.

sstotal can also be written as

sstotal = ssregression + sserror . 

In the case of populations,

ssregression = ∑(E(y | x) - my )
2

and

sserror = ∑(y - E(y | x))2.

The proportion of variability in y explained by regres-
sion is given by

ρ2 =
ss

ss
regression

total

.
 

The proportion of variability in y not explained by 
regression is given by

1
2− =ρ

ss
ss
error

total

.

From the above equation, we can see that

ss sserror total= −( ) .1 2 2ρ

Because variances are just average sums of squares, we 
can write

ss
N

ss
N

error total= −( )1 2ρ

as
σ ρ σerror total

2 2 21= −( ) .

In regression, σ
error

2 is typically referred to as σ
est

2 , and 
σ y

2 is just another name for σ
total

2
.  Therefore

σ ρ σest
Error= = −
ss
N y( ) .1 2 2

Table 14.A3.1 summarizes the quantities we’ve dis-
cussed and the relationships between them. 

We can gain some insight into the relationship 
between the variance of the marginal distribution of 
y-scores (σ y

2 ) and the variance of the conditional dis-
tributions (σ

est

2 ) by considering Figure 14.A3.1. Figures 

TABLE 14.A3.1  ■  A Summary of the Sources of Variability in a Regression Analysis

Description
Raw-Score
Formulas

Formal
Symbols

Descriptive
Symbols

Parametric
Formulas

Variance of the y-scores. ∑(y - my )
2/N σ2

y σ2
total σ2

regression + σ2
error

Variance of the expected 
values of y: E(y|x).

∑(E(y | x) - my)
2/N σ2

E(yx) σ2
regression ρ σ

2
total
2*

Variance of the deviations 
of the y scores from their 
expected values: y - E(y|x).

∑(y - E(y | x))2/N σ2
y - E(yx) σ2

est
( )1

2
total
2

− ρ σ*
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14.A3.1a, 14.A3.1c, and 14.A3.1e show three homosce-
dastic bivariate distributions. These figures show that all 
conditional distributions have the same standard devia-
tions (σ

est

2 = 2.5), and only the regression lines differ.
Figures 14.A3.1b, 14.A3.1d, and 14.A3.1f show 

probability density functions rotated 90° from their 
usual orientation with density on the x-axis and the 
dependent variable on the y-axis. This rotation makes 
it easier to see the connection between both sides of 
the figure. The conditional distributions are shown as 
blue lines in Figures 14.A3.1b, 14.A3.1d, and 14.A3.1f. 
Although all conditional distributions have σ2

est = 2.5, 
their means [E(y|x)] depend on the slope of the regres-
sion line. The steeper the slope, the more widely sepa-
rated the conditional distributions.

The gray lines in Figures 14.A3.1b, 14.A3.1d, and 
14.A3.1f show the marginal distributions of y-scores. 
The standard deviation for each marginal distribution 
is denoted σy, and the variance is denoted σ2

y . Figure 
14.A3.1 shows that the steeper the slope of the regres-
sion line, the more variability there is in the marginal 
distribution of y-scores. Figures 14.A3.1b, 14.A3.1d, 
and 14.A3.1f show σy at the top and σest at the bottom, 
demonstrating that σy increases as the magnitude of β 
increases. When β = 0, the marginal distribution and 
the conditional distributions are identical (see Figure 
14.A3.1f). In this case, regression explains none of 
the variability in the marginal distribution of y values 
because there is no variability in the expected value of 
y; i.e., E(y|x) = μy for all levels of x. For example, Figure 
14.A3.1e shows that E(y|x) = 24.5, so μy = 24.5.

The marginal distribution becomes wider as β 
increases, while the standard deviations of the condi-
tional distributions (σest ) remain unchanged. In this 
case, regression explains some of the variability in the 
marginal distribution of y values because the increase 
in the standard deviation of the marginal distribution is 
caused by the increase in the variability in the expected 
values, E(y|x). So, some of the variability in the mar-
ginal distribution is related to σest and some to the varia-
bility in the expected values, E(y|x). As β increases, the 
proportion attributable to E(y|x)  increases. The exact 
proportion of the variability in the marginal distribu-
tion arising from variability in the E(y|x) values is ρ2.

Because β is defined in terms of ρ, the separation 
between the conditional distributions is also related to 
ρ2. Figures 14.A3.1a, 14.A3.1c, and 14.A3.1e show ρ2. 
Figures 14.A3.1b, 14.A3.1d, and 14.A3.1f show that as ρ2 
increases (from 0 to .56 to 0.9), the separation between 
the conditional distributions increases.

If we know ρ2 and σ2
y, then

σ ρ σ
est

2 2 2
1= −( ) y .
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FIGURE 14.A3.1  ■  Conditional and Marginal Distributions

The relationship between the slope of the regression line and the total 
variability in y. (a, c, and e) Three homoscedastic bivariate distributions. In 
all cases, σest = 2.5. (b, d, f). The blue lines show the conditional distributions. 
The separation between the means of the conditional distributions depends 
on the slope of the regression line. The steeper the slope, the more widely 
separated the distributions. The gray lines show the marginal distributions 
of all y-scores. The variances of these distributions are σ σ ρy

2 2 2
1= −est / ( ).

In addition, if we know ρ2 and σ2
est, then
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σ
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