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APPENDIX 16.2: MULTIPLE REGRESSION IN EXCEL

SPSS is a powerful tool for doing statistical analyses, 
but Excel has functions that do many of the same things. 
The LINEST function in Excel allows us to perform 
multiple regression rather easily. The syntax for the 
LINEST function is

LINEST(y,x1 . . . xk,[const],[stats]).

The outcome variable y is a column of numbers and 
x1 . . . xk is one or more columns of predictor variables. 
The optional argument const takes values of 0 and 1 
(or FALSE and TRUE). (Optional arguments are always 
enclosed in square parentheses in Excel.) When const is 
set to 0, the regression equation is computed assuming 
that the intercept is 0; this makes little sense for most of 
our applications. When const is set to 1, the regression 
equation is computed in the usual way. The final 
argument, stats, also takes values of 0 and 1 (or FALSE 
and TRUE). When stats = 0, then only the coefficients 
of the regression equation are returned. When stats = 
1, then the coefficients of the regression equation are 
returned along with a number of other statistics that 
we’ll discuss below.

LINEST is different from all other functions we’ve 
discussed before because it returns more than a single 
value. In the language of Excel, LINEST is called an 
array function, and extra steps must be taken to have 
multiple values returned. Figure 16.A2.1 shows how we 
enter arguments into the LINEST function (see cell E8). 
The y values are in cells A2:A21, and the three predic-
tors x1 . . . xk are in cells B2:D21. const is set to 1 and 
stats is set to 1. When we press return, a single number 
appears in cell E8, as shown in Figure 16.A2.2.

The number in cell E8 is the regression coefficient 
for the third predictor; i.e., b3. Before we look at how to 
obtain the remaining coefficients and statistics, we will 
look at how these will be arranged. The cells in the array 
E2 to H6 have text labels that correspond to the way that 
Excel returns the coefficients and statistics of the regres-
sion analysis. The top-left element will be the regres-
sion coefficient for the last, or kth, predictor; i.e., bk. In 
our example, there are three predictors, so k = 3. As we 
move from left to right in this row, we see the remain-
ing regression coefficients (b2 and b1 in this case) and 
the intercept (a). Below each of these coefficients will be 

their standard errors (s s sb b bk k
, , . . . ,

-1 1
 and sa ). The text in 

the remaining cells (E4:F6) should be self-explanatory.
To obtain the remaining coefficients and statistics, 

we highlight an array of cells having five rows and  
k + 1 columns, with the top-left cell of this array con-
taining the result returned by LINEST. This is shown 
as the shaded rectangle in Figure 16.A2.3. With this 
region highlighted, we enter a sequence of keystrokes 
that will differ depending on whether you are using 
a Macintosh or a PC. On a Macintosh, you first enter 
<control>u. That is, you press the control key and the 
u key simultaneously. This will highlight the y and x 

FIGURE 16.A2.2 ■ Initial LINEST Output

 

FIGURE 16.A2.1 ■ Entering the LINEST Function
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columns of data, as shown in Figure 16.A2.4. The same 
thing can be accomplished by clicking in the formula 
bar at the top of the sheet. If you do this, there is no 
need to enter <control>u. The next step is to press the 
command key (⌘) and then return (⏎). When this is 
done, the regression coefficients and statistics will fill 
in the highlighted region, as shown in Figure 16.A2.5. 
On a PC, you first place the cursor in the formula bar at 
the top and then press <control><shift>enter. The result 
will be the same as in Figure 16.A2.5.

The text in cells E2 to H6 denotes the quantities 
in cells E8 to H12. The first row (E8 to H8) shows the 
regression coefficients, and the second row (E9 to H12) 
shows the standard errors of the regression coefficients. 
Cells E10 and F10 contain R2 and sest, respectively. Cells 
E11 and F11 contain Fobs and dfregression, respectively. 
Cells E12 and F12 contain ssregression and sserror, respec-
tively. The #N/A symbol appears in cells for which 
LINEST doesn’t return a value.

Figure 16.A2.6 shows the regression analysis performed 
by SPSS on the data shown in Figure 16.A2.1. A quick 
comparison between this and Figure 16.A2.5 shows that 
exactly the same regression coefficients, standard errors, 
R2, sest, Fobs, ssregression, and sserror are obtained in both cases. 
Excel does not compute the t-statistics and p-values associ-
ated with the regression coefficients, but this can be done 
easily in Excel by dividing each bi by its estimated stand-
ard error, sbi.  The p-value can be obtained using the T.DIST  
function discussed in earlier appendices. There are n - k 
- 1 degrees of freedom associated with each of these tests.

We did not discuss confidence intervals around the 
regression coefficients in Chapter 16, but these can be 
easily computed as

b t si bi
± α / ( ),

2

where tα/2 is based on n - k - 1 degrees of freedom. 
Therefore, the 95% confidence interval around b1 
would be

CI

 

= ±

= ± = −

b t si biα /
( )

. . ( . ) [ . , . ].

2

0 536 2 12 0 374 0 26 1 33

We will discuss the regression coefficients in more 
detail in Chapter 17.

To compute the p-value associated with Fobs, we 
use the F.DIST function in Excel, as shown in Figure 
16.A2.7. The F.DIST function has the following syntax:

F.DIST(Fobs,dfregression,dferror,cumulative).

FIGURE 16.A2.3 ■ Specifying the Output Cells

To obtain the remaining coefficients and statistics from the 
regression analysis, we highlight an array of five rows and  
k + 1 columns, with the result returned by LINEST in the top 
left. This region is shown as the shaded rectangle.

FIGURE 16.A2.4 ■ Preparing the Full Analysis

When the cursor is placed in the formula bar, we say that the 
LINEST cell has been selected. (This can also be accomplished 
on a Macintosh by pressing <control>u.) Once this is done, 
press ⌘⏎ on a Macintosh, or press <control><shift>enter 
on a PC.

FIGURE 16.A2.5 ■ LINEST Regression Output

Cells E2 to H6 denote the quantities in cells E8 to H12.
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FIGURE 16.A2.6 ■ SPSS Regression Output

 

When cumulative is set to 1 (as in the second-to-last 
row in Figure 16.A2.7), F.DIST returns the proportion 
of the F-distribution with dfregression and dferror falling 
below Fobs. In this example, the proportion of an 
F-distribution with 3 and 16 falling below Fobs = 
3.983 is .973. The proportion above Fobs = 3.983 is 
1 - .973 = .027, as shown in the last row of Figure 
16.A2.7. Therefore, the three-predictor model 

explains a statistically significant proportion of the 
variability in y.

Note that the F.DIST.RT function

F.DIST.RT(Fobs,dfregression,dferror)

accomplishes the same thing by returning the 
proportion of the F-distribution above Fobs; i.e., the 
proportion of the F-distribution in the right tail (RT).

APPENDIX 16.3: POWER FOR R2 AND DR2

The small data set discussed in Chapter 16 was chosen 
to illustrate the fundamentals of standard multiple 
regression analysis. Missing from our discussion 
of the data set was the notion of power. We’ve seen 
before that a prospective power analysis should be 
conducted before data collection. Of course, we could 
not have discussed power at the outset because we 
have to know something about multiple regression 
before we can discuss power. Now that we are in a 
position to discuss power, we will work through the 
kind of analyses that should be conducted before data 
collection.

As we’ve seen, researchers almost universally use 
significance testing to assess the fit of a regression 
model to data (the omnibus F for R2) or the change in 
explained variance (ΔR2) resulting from the addition of 
one or more predictors to a model. We can assess power 
for both levels of analysis using G*Power.

The measure of effect size used for the omnibus test 
is Cohen’s f 2, which is defined as

f 2
2

2

1

=
−

P

P

. (16.A3.1)

FIGURE 16.A2.7 ■ The F.DIST Function in Excel
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where P2 is the population version of R2 that you wish 
to detect in a significance test. Equation 16.A3.1 is 
essentially the first term of Fobs from equation 16.8. To 
conduct a power analysis, we simply decide what value 
of P2 would be meaningful, compute f 2, and then enter 
this in G*Power as shown in Figure 16.A3.1.

If we were to assume that P2 = .53 is the explained 
variance that would be interesting in a given research 
setting, then equation 16.A3.1 shows that this corre-
sponds to f 2 = P2/(1 - P2) = .53/.47 = 1.127. In G*Power, 
we choose F-tests from the Test family drop-down list 
and Linear multiple regression: Fixed model, R2 devia-
tion from zero from the Statistical test drop-down list. 
From the Type of power analysis drop-down list, we 
choose A priori: Compute required sample size - given α, 
power, and effect size. f 2 = 1.127 is entered in the Effect 
size box, and α, power, and number of predictors are 
entered in the boxes below this. When the analysis has 
been described, clicking  returns the result of 
the analysis in the Output parameters area of the dialog.

Figure 16.A3.1 shows that we require 13 subjects to 
detect P2 = .53 with power = .8, when there are two pre-
dictors and α = .05. (In fact, we would actually achieve 

power = .84.) This result is probably not surprising; P2 = 
.53 is quite a large proportion of explained variance and 
should therefore be easy to detect.

The more interesting case is determining the sam-
ple size required to detect a specific change in explained 
variance. The measure of effect size used for power 
analyses related to ΔR2 is a second version of Cohen’s 
f 2, defined as

f 2
2 2
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. (16.A3.2)

Equation 16.A3.2 is the first term of Fchange from equation 
16.10. However, we are considering parameters and not 
statistics, so we replace R with P.

To conduct this analysis, one must have some sense 
of how much variance will be explained by our initial 
or reduced set of predictors, which we described ear-
lier as the smaller model. So, we must have an idea of 
what Psmaller

2  would be. Such estimates could be drawn 
from previous research. In addition, we would have 
to know what increase in explained variance (ΔP2) 
would be meaningful in the context of our research  

FIGURE 16.A3.1 ■ A Power Analysis for P2

 

FIGURE 16.A3.2  ■ A Power Analysis for ΔP2
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question. With these questions answered, we can say 
that P P Plarger smaller

2 2 2= + ∆  and then determine f 2 from 
equation 16.A3.2.

If we were to expect P
smaller

2  to be .47 and judge that 
ΔP2 = .066 would be a meaningful increase in explained 
variance, then P2

larger = P2
smaller + DP2 = .47 + .066 = .536. 

Using equation 16.A3.2, we determine that 

f 2 = DP2/(1 - P2
larger ) = .066/.464 = 0.142.

In G*Power, we choose F-tests from the Test fam-
ily drop-down list and Linear multiple regression: Fixed 
model, R2 increase from the Statistical test drop-down 
list. From the Type of power analysis drop-down list, we 
choose A priori: Compute required sample size - given 
α, power, and effect size. The effect size, f 2 = 0.142, is 
entered in the Effect size box, and α and power are entered 
below this. The text box labeled Number of tested predic-
tors asks for the difference in the number of predictors 
between the larger and smaller models. In our example, 
this is 2 - 1 = 1. The text box labeled Total number of 

predictors asks for the number of predictors in the larger 
(full) model. In our example, this is 2. When the analysis 
has been described, clicking  returns the result 
of the analysis in the Output parameters area of the dialog.

Figure 16.A3.2 shows that we require 59 subjects to 
detect ΔP2 = .066 with power = .8, when there are two 
predictors, P

smaller

2
47= .  and α = .05. Of course, these 

numbers relate to our example of adding TIE scores to 
students’ application package. If the researchers had 
deemed a 6.6% increase in explained variance to be 
meaningful, they should have had 59 rather than 27 par-
ticipants in order to achieve power = .8.

The sample size in our GRE/TIE example (n = 27) 
suggests that the researchers either (i) were expecting 
ΔP2 to be much larger than .066 or (ii) hadn’t given 
much thought to what value of ΔP2 would be meaning-
ful, and they thus obtained as many subjects as they 
could and hoped for the best. Planning your sample 
size based on your best estimate of P

smaller

2  and having 
a sense of what ΔP2 would be meaningful is essential to 
worthwhile research.


