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APPENDIX 17.2: MEAN-CENTERING VARIABLES AND VIF

In Chapter 17, we saw that subtracting the mean 
from a set of scores produces a new set of scores that 
has a mean of 0. This new set of scores is said to be 
a mean-centered version of the original set of scores. 
Researchers often mean-center their predictor variables 
when testing for moderation. Two reasons for this were 
mentioned. The first is that mean-centering variables 
makes it somewhat easier to interpret the regression 
equation when the interaction term is included. The 
second is that many researchers believe that mean-
centering reduces problems with multicollinearity. We 
will discuss these two issues in turn, making use of the 
introductory example described in Figure 17.16.

Mean-Centering to Make Sense  
of the Regression Coefficients

In Chapter 17, we introduced an example in which the 
regression equation that predicts y from x, mod, and xm was

ŷ = 657.69 - 8.58(x) - 55.65(mod) + 0.96(xm).

The partial regression coefficient bx = -8.58 is the slope 
of the regression line parallel to the x-axis when mod = 
0, and bmod = -55.65 is the slope of the regression line 
parallel to the mod-axis when x = 0. These values are 
not particularly helpful because x = 0 and mod = 0 are 
outside the ranges of our predictors.

Mean-centering x shifts these scores so that they 
are centered on 0 rather than mx, and mean-centering 
mod shifts these scores so that they are centered on 0 
rather than mmod. The regression equation that predicts y 
from xc, modc, and xcmc is

ŷ = 203.02 + 1.02(xc ) + 39.88(mc ) + 0.96(xcmc ).

Figure 17.A2.1 shows the effect of mean-centering 
the scores in x and mod. If you compare Figure 
17.A2.1 with Figure 17.16, you will see that nothing 
has changed except that all x and mod scores have 
been shifted to be centered on [xc = 0, modc = 0], rather 
than [mx = 99.489, mmod = 10]. The same is true of the 
regression surface.

The gray lines in Figure 17.A2.1 show the values of 
the regression equation when xc = 0 and modc = 0. When 
modc = 0, the regression line relating x to y is

ŷ = 203.02 + 1.02(xc ).

When xc = 0, the regression line relating mod to y is

ŷ = 203.02 + 39.88(mc ).

Some might see mean-centering as worth the effort 
because we can now see the slope of the regression 
equation passing through the mean of x and mean of 
mod. However, these slopes could have been calculated 
as easily from the original regression equation. The slope 
of the regression equation for any given value of mod is

b = bx + bxm(mod).

Therefore, to determine the slope of the regression 
line in the x direction at the mean of the moderator, we 
simply fill in the required quantities (from the original 
equation) to find

b = bx + bxm(mod ) = -8.58 + 0.96(10) = 1.02.

Similarly, to determine the slope of the regression plane 
in the mod direction at the mean of the predictor, we 
simply fill in the required quantities (from the original 
equation) to find

b = bx + bxm(mod) = -55.65 + 0.96(99.49) = 39.86,

which differs from the centered coefficient (39.88) only 
by rounding error.

FIGURE 17.A2.1 ■ Mean Centering x and mod

The regression surface with an interaction term (xcmc) when 
the predictor (xc) and moderator (modc) have been centered.
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Mean-Centering and Collinearity

In Chapter 16, we noted that regression equations might 
become unstable if the predictor variables are too highly 
correlated with each other; we called this problem mul-
ticollinearity. We saw that SPSS uses tol and VIF as 
multicollinearity diagnostics. These reciprocally related 
measures (VIF = 1/tol) reflect how much of the variance 
in a given predictor is explained by the remaining predic-
tors. The question of multicollinearity arises in modera-
tion analysis because the interaction term (xm) is always 
highly correlated with x and mod, and the multicollinear-
ity diagnostics can go through the roof as a result.

To see the effects of mean-centering (or not) on 
tol and VIF, consider the two hierarchical regressions 
shown in Figure 17.A2.2. Figure 17.A2.2a shows the 
coefficients table obtained with uncentered predictors 
and interaction term; x and mod were entered on step 1 
and xm was added on step 2. Figure 17.A2.2b shows the 
coefficients table obtained with centered predictors and 
interaction term; xc and modc were entered on step 1 and 
xcmc was added on step 2.

Figure 17.A2.2a shows that on step 1, tol and VIF 
were .991 and 1.009 for both x and m. These indicate 
no problem with collinearity, and they actually show 
that there is very little correlation between x and mod. 
However, when xm is added on step 2, the tol and 

VIF diagnostics change dramatically. The tol value 
associated with x is .03, which means that the proportion 
of variability in x explained by mod and xm together is  
1 - tol = .97. The tol values are even smaller for x and xm.

Figure 17.A2.2b shows that on step 1, tol and VIF 
were .991 and 1.009 for both xc and modc. These are the 
same values seen on step 1 in Figure 17.A2.2a. When 
xcmc is added on step 2, the tol and VIF diagnostics 
change very little. The tol value associated with xc is 
.98. This means that the proportion of variability in xc 
explained by modc and xcmc is 1 - tol = .02. Because 
the tol and VIF diagnostics do not exceed the rule-of-
thumb criteria, mean-centering is often seen as a cure 
for multicollinearity.

Although centering is widely treated as a cure for 
multicollinearity, centering usually makes no practical 
difference to what the regression equation conveys 
in a moderation analysis. For example, note that in 
Figure 17.A2.2, the coefficients on xm and xcmc, their 
estimated standard errors (0.265), t-values (3.626), 
p-values (.000), and confidence intervals [0.434, 1.486] 
are identical. Therefore, centering has no effect on 
the interaction term, which is really the main focus of 
moderation analysis.

In addition, centering has no effect on the model 
statistics, as shown in Figure 17.A2.3. The Model 
Summaries in Figure 17.A2.3 correspond to the same 

Hierarchical regressions (a) with and (b) without mean-centering of x and mod. Mean-centering of x and mod makes no 
difference to the statistics of the interaction term (x or xcmc).

FIGURE 17.A2.2 ■ Regression Coefficients With and Without Mean-Centering

(a)

(b)
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two hierarchical regressions shown in Figure 17.A2.2. 
The Model Summary in Figure 17.A2.3a was obtained 
with x, mod, and xm, whereas the Model Summary in 
Figure 17.A2.3b was obtained with xc, modc, and xcmc. 
A quick look at these two tables shows that they are 
identical. Therefore, if our focus is on whether there is 
evidence of an interaction between x and mod, mean-
centering the predictors makes absolutely no difference 
to our conclusions.

Reconsidering VIF

Statistics texts commonly caution about a regression 
coefficient for which VIF exceeds 10. The worry is that 
the inflation of the estimated variance associated with 
the regression coefficient (sbi

2 ) makes the estimate unre-
liable; small changes in the predictor variables may 
cause large changes in the regression equation. This 
unreliability would be reflected in a large value of sbi

2 , 
which would mean the estimate of βi is very imprecise. 
However, O’Brien (2007) pointed out that VIF is not the 
only thing that affects sbi

2 . In fact, sbi
2  may be quite rea-

sonable (small) even if VIF is many times greater than 10.
Equation 17.A2.1 shows how sbi

2  can be expressed 
in terms of VIF, as shown in Chapter 17:
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VIF tells us how much sbi
2  is inflated relative to what it 

would be if predictor xi shared no variance with the other 
predictors. Notice, however, that sbi

2  is also affected by 
ssxi. Because ssxi is a sum of squared deviations, it will 

increase as sample size increases. Therefore, ssxi  and 
VIF have opposite effects on sbi

2 . As a consequence, sbi
2  

may be quite small even if VIF exceeds the rule-of-
thumb criterion of 10.

The inflation of sbi
2  is also counteracted by R2 itself. 

As R2 increases, all things being equal, sbi
2  will get 

smaller. This can be seen in equation 17.A2.2. The first 
line shows sbi

2  defined in terms of VIF. The second line 
replaces s

est

2  with its definition, which includes the term  
1 - R2. In the last line of equation 17.A2.2, 1 - R2 has 
been moved beside VIF for clarity.
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Equation 17.A2.2 makes clear that 1 - R2 and VIF  
have opposite effects on sbi

2 ; as R2 increases, 1 - R2 
decreases.

These two considerations show that the rule-of-
thumb criterion of 10 is a blunt instrument (like p < .05) 
that should not be used indiscriminately.

Finally, let’s return to the question of mean- 
centering variables. Although many researchers use 
mean centering in moderation to reduce multicol-
linearity and make regression equations more stable, 
Echambadi and Hess (2007) show that mean-centering  
variables does not actually achieve this. Echambadi and 

FIGURE 17.A2.3 ■ Model Summaries With and Without Mean-Centering

Hierarchical regressions (a) with and (b) without mean-centering of x and m. Mean-centering of x and m makes no difference 
to the statistics of the models.

(b)

(a)
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Hess point out that multicollinearity is related to the 
covariance matrix for the predictor variables. As we saw 
in Chapter 13, the covariance for variables x1 and x2 is

cov
( )( )

.x x
x xx m x m
n1 2

1 21 2

1
=
∑ − −

−
(17.A2.3)

The covariance matrix is a square matrix, like a corre-
lation matrix, whose entries are covariances rather than 
correlations. The degree to which columns of a covari-
ance matrix can be predicted from each other gives rise 
to a measure called the determinant (or det). If the de-
terminant is very small, then the matrix is said to be sin-
gular. Echambadi and Hess show that the determinant 
for the covariance matrix for centered and uncentered 
variables is the same, so mean-centering does not ad-
dress the question of multicollinearity. They conclude 
their article with the following comment:

As shown in our analytical results, compared 
with uncentered models, mean-centering does 

not change the computational precision of 
parameters, the sampling accuracy of the main 
effects, simple effects, interaction effects, or the 
overall model R2. Therefore, it is clear that mean-
centering does not alleviate collinearity problems 
in moderated regression models. (p. 443)

In summary, VIF greater than 10 does not necessarily 
imply an unstable regression equation, and mean-
centering variables does not provide more insight into 
the nature of the moderator.
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