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 APPENDIX 18.1: POWER ANALYSIS FOR THE ONE-FACTOR BETWEEN-SUBJECTS ANOVA

We’ve noted at many points that significance tests 
are frequently underpowered, thus wasting time and 
resources. Obviously we should aim for high power 
when conducting ANOVAs, but we will see that there are 
two perspectives on this question that have to do with 
the two levels of analysis that we have considered. That 
is, we can think of power in terms of the omnibus test of

H0: m1 = m2 = . . . = mk

or in terms of specific contrasts, as follows:

H0: Yi = 0.

G*Power makes it very easy to do a power analysis 
at both levels. Although we will deal with these two 
perspectives in turn, ensuring adequate power for 
specific contrasts is far more important than ensuring 
adequate power for the omnibus test.

An Example

Let’s think about a hypothetical graduate student in psy-
chology who theorizes that motor skills gained playing 
video games transfer to other motor tasks. He would like 
to study gamers who have experience with action games 
(such as Grand Theft Auto and Call of Duty) and concep-
tual games (such as Portal and Tetris). The action games 
require fast and immediate reactions to unpredictable 
events, whereas the conceptual games require fast reactions 
following some deliberation. This student predicts that gam-
ers who have more experience with action games will be 
able to respond more quickly to unpredictable stimuli than 
those who have more experience with conceptual games. 
He also predicts that gamers as a group will have faster reac-
tion times than those who don’t play video games.

The student’s plan for this quasi-experiment is to 
recruit three groups of participants. One group will 
have extensive experience with action games and 
another will have extensive experience with conceptual 
games. The third will be a control group of individuals 
with minimal experience with either type of game.

To assess his prediction about motor responses, 
the student will have all participants perform a simple 
reaction-time task that requires them to press a button 
as quickly as possible when a dim light appears at an 
unpredictable location on a computer screen. Each par-
ticipant will go through 256 trials, and the dependent 

variable is the average time it takes to respond to each 
of the 256 stimuli. The student plans to run a one-way 
between-subjects ANOVA with three levels. He pre-
dicts that there will be a statistically significant omni-
bus effect. He also specifies the following alternative 
hypotheses:
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Our student really should not test both the omnibus 
effect and the two planned contrasts. However, for the 
purposes of this exercise, we will use the same example 
to illustrate these two levels of analysis.

Power for the Omnibus Effect

All power analyses require some measure of effect size. 
For the omnibus ANOVA, we use the quantity

f m=
σ
σ

. (18.A1.1)

In equation 18.A1.1, σ is the within-groups standard 
deviation and σm is the standard deviation of k hypo-
thetical population means. To compute f requires an 
actual hypothesis about what the population means are. 
We can denote this hypothesis this way:

H1: m1, m2 . . . mk.

This means we have to specify values for the k 
population means, which is a theoretical question, not 
a statistical question.

Whatever population means we specify, the vari-
ability among them is defined as follows:

σ µ µm i
k k= ∑ −=1

2( ) ,i / (18.A1.2)

where
µ µ= ∑ =i

k
i k1 / .

Equation 18.A1.1 shows that the effect size ( f ) is a ratio 
of two standard deviations, so the absolute values of σ 
and σm are not important. Therefore, a simple way to 
compute f is to set σ = 1 and let the differences between 
the k means (μ1, μ2,…, μk) represent standard deviation 
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units. In this way, we are specifying (k2 - k/2) contrasts 
simultaneously.

Our hypothetical graduate student expects the dif-
ference between the two gamer groups to be on the 
order of ½ a standard deviation, which Cohen’s model 
would classify as a medium effect size. The student also 
assumes that the control participants will have reaction 
times that are about a ½ standard deviation greater than 
those in the conceptual games group. Therefore, to con-
duct his power analysis, he assumes the following:

mcontrol = 1.0,

mconceptual = 0.5, and

maction = 0.0.

(Please note that any three numbers separated by ½ 
would serve equally well.) The mean of these three 
means is µ µ= ∑ ==i

k
i k1 5/ . .  When we calculate σm from 

these numbers, we find

σ µ µm i
k

i k= ∑ − = + + ==1
2 0 25 0 0 025 3 41( ) ( . . . )/ . ./

Therefore, ƒ = σm/σ = 0.41/1 = 0.41.

Figure 18.A1.1 shows how to do a power analysis 
for the omnibus effect in G*Power. The drop-down list 
in Test family is set to F tests and the Statistical test is 
set to ANOVA: Fixed effects, omnibus, one-way. In the 
Input parameters region, we can enter ƒ, α, power, and 
number of groups. Our effect size ƒ was calculated to be 
0.41, and we will set α = .05, power = .8, and number of 
groups to 3. When these quantities have been entered in 
the appropriate boxes in the Input parameters section, 
pushing the  button produces the total sam-
ple size required to achieve the requested power. Figure 
18.A1.1 shows that to achieve power = .8 when α = .05 
requires 63 participants, or 63/3 = 21 per group.

Power Analysis for Planned Contrasts

A power analysis for contrasts is conducted in much the 
same way as for the omnibus test. We will continue to 
set σ = 1, so that differences between our hypothesized 
means can be seen as effect sizes. To compute σm for 
a contrast, we first put our predicted means in vector 
form. For our student’s hypothesis, we would have

h = {mcontrol, mconceptual, maction} = {1.0, 0.5, 0.0}.

We also specify a contrast in a similar way:

w2 = {0, 1, -1}.

With this information, we compute σm as follows:
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. (18.A1.3)

The following steps provide a very general method 
to determine the sample size required to achieve any 
desired power for any possible contrast or trend. 
Whether we are considering a trend or a contrast, the 
basic requirements are weights (w) and hypothesized 
means (h). So, let’s work through the steps required 
to compute ƒ = σm/σ for the contrast that compares the 
response times of the two gamer groups.

Step 1. Specify the contrast of interest as a set of 
weights. Because we are interested in the dif-
ference between the means of the two gamer 
groups, our weights are

w2 = {0, 1, -1}.

Step 2. Specify the predicted means, where the sepa-
rations between means are assumed to be in 

FIGURE 18.A1.1 ■ Power Analysis: Omnibus
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units of standard deviation. This is the hard 
part because it requires specifying our expec-
tations, or what we judge to be important; this 
is not a statical issue. For this illustration, we 
have stated that the means will be

h = {1.0, 0.5, 0.0}.

Step 3. Compute the contrast, which is the numera-
tor of equation 18.A1.3. We do this using  
equation 18.6:

c w hi
k
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Step 4. Compute the denominator of equation 
18.A1.3. We do this as follows:
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i
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Step 5. Compute σm using equation 18.A1.3. Substi-
tuting in the quantities we’ve computed, we 
obtain
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Step 6. Compute f using equation 18.A1.2. We assume 
σ = 1, so f = σm = 0.2041.

These steps can be implemented very easily in Excel.
The final step in this process is to use G*Power to 

compute the number of participants required to achieve 
power = .8. Figure 18.A1.2 shows how this is done. The 
main difference between Figures 18.A1.1 and 18.A1.2 is 
that a different selection has been made in the Statisti-
cal test drop-down list. The selection made in Figure 
18.A1.2 is ANOVA: Fixed effects, special, main effects 
and interaction. This produces one additional box in the 
Input parameters region. The new option is Numerator 
df. Remember that all contrasts are essentially t-tests 
and thus use one degree of freedom. Therefore, we 
enter a 1 in this new box. We just computed ƒ = 0.2041 
for the effect size associated with our contrast, so we 
enter this in the first box, Effect size f. The quantities  
α = .05, power = .8, and number of groups = 3 are the 
same as before.

When these quantities have been entered in the 
appropriate boxes in the Input parameters section, 
clicking the  button produces the total sam-
ple size required to achieve the requested power. The 

Output parameters region in Figure 18.A1.2 shows that 
to achieve power = .8 when α = .05 requires 191 partici-
pants, or 191/3 ≈ 64 per group.

It is important to note that more participants are 
required to achieve power = .8 for the contrast (n ≈ 
64 per group) than for the omnibus test (n = 21 per 
group). Because contrasts are more informative than 
the omnibus effect, you should always make sure that 
you have enough participants to achieve your desired 
power (typically at least .8) for all contrasts. This 
means computing ƒ = σm for all contrasts and then 
determining the sample size required to detect the 
smallest of these.

Power Planning From Published Results

In the preceding discussion, our graduate student gen-
erated a set of hypothetical standardized means based 
on his judgment about what would be interesting. We’ve 
seen before, however, that predictions or expectations 
about population means can also come from published 
results. Imagine someone had run the same quasi-
experiment that our student wants to run and used  

FIGURE 18.A1.2 ■ Power Analysis: Contrasts
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12 subjects in each of the three conditions. The results 
are shown in Table 18.A1.1.

Let’s say that the authors of this study submitted 
these results to a one-factor between-subjects ANOVA 
and found the omnibus F to be statistically significant, 
F2,33 = 6.88, p = .003, h

̭
2 = .29. They then used Bonfer-

roni-corrected t-tests to answer several questions using 
the contrast weights shown in columns w1 and w2. They 
found, as expected, that the control group differed from 
the mean of the two gaming groups, c1 = 80, t(33) = 2.93, 
p = .01. They then asked whether the mean of the action 
group differed from the mean of the conceptual group. 
This contrast was in the predicted direction, c2 = 28, 
meaning that those who had experience with conceptual 
games responded more slowly than those who had expe-
rience with action games. However, this difference was 
not statistically significant, t(33) = 0.90, p = .74. 

Because we’re not really interested in the omni-
bus effect, we will focus on using the data from Table 
18.A1.1 to do a power analysis for contrast 2, which 
compared the means of the two gamer groups. To con-
duct a power analysis, we need values for σ and σm so 
that we can calculate f.

First, we can compute σ from the data as follows:

σ = ∑ =i
k

is k1
2/ . (18.A1.4)

This quantity is a version of spooled, which is the square 
root of the average sample variance. Table 18.A1.1 
shows that spooled = 75.86; so for our purposes, σ = 75.86. 
Next, σm can be computed exactly as before using 
equation 18.A1.4. Therefore,
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With σm = 11.43 and σ = 75.86, we determine that,

f = σm /σ = 11.43/75.86 = 0.15.

We use G*Power exactly as before and find that we 
would need 351 participants altogether, or 117 in each 
group, to achieve power = .8 when α = .05. Yikes!

Conclusion

Our graduate student was right to conduct a prospective 
power analysis before undertaking his quasi-experiment. 
Now that he knows something about how big his sam-
ples need to be, what action should he take? It seems to 
me that he shouldn’t bother with this quasi-experiment. 
In the absence of any published data, the student thought 
that a difference between the action and conceptual gam-
ing groups of ½ a standard deviation (δ = 0.5) would be 
interesting. A quasi-experiment designed to detect this 
difference with power = .8 would require 64 participants 
per condition. When considering the published data on 
this effect, the observed effect size was even smaller, d = 
(282 - 254)/75.86 = 0.35, and detecting an effect of this 
size would require 117 participants per condition.

A quasi-experiment with three conditions having 
64 to 117 participants per condition would be enor-
mous. Finding 64 participants for each of the two gamer 
conditions would be a huge and expensive undertaking 
in itself. Running each participant through the quasi-
experiment would require at least half an hour, so this 
means about 3 * 64/2 = 96 hours of testing. Things get 
far worse when we consider the possibility of having to 
run 117 participants per condition.

The expected return from this quasi-experiment 
is an answer to the question of whether gaming expe-
rience produces a statistically significant transfer of 
motor skills from gaming to other tasks. It is not clear 
what value such a result would have outside a theo-
retical context, but the student might be able to make 
a compelling case for the general importance of the 
result. Without this kind of context, however, one must 
question the value of investing in the quasi-experiment.

Finally, the proposed study is, after all, a quasi-
experiment. This means that one can’t infer causality 
from observed differences between the groups. Those 
drawn to action games may find them enjoyable pre-
cisely because they have naturally fast reactions and 
these lead to success in the games. Those not drawn to 
gaming may not find them enjoyable precisely because 
they are not naturally quick and so such games are not 
rewarding. On the whole, then, pursuing this study 
seems ill advised.

TABLE 18.A1.1 ■ Data for Three Groupsa

Condition i m s s2 w1 w2

Control 1 348 48.64 2366 1.00 0.00

Conceptual 2 282 84.25 7098 -0.50 1.00

Action 3 254 88.32 7800 -0.50 -1.00

c1 c2

80.00 28.00

an = 12, s2
pooled = 5754.67, spooled = 75.86.
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We can be grateful for freely available programs like 
G*Power that allow us to plan our experiments easily. 
The importance of power analysis cannot be overstated. 
Without it, we run on hunches, tradition, and little more. 
Underpowered experiments waste (i) experimenters’ 

time, (ii) taxpayer-supported grant money, (iii) partici-
pants’ time, and (iv) animals’ lives (in the case of animal 
research). These days there can be no excuse for running 
a significance test without having conducted a prospec-
tive power analysis.

LEARNING CHECK 1

1. A researcher would like to know how motor activity 
in rats relates to how much cocaine has been injected 
into their bloodstreams. Her dependent variable is the 
number of minutes per hour rats spend on a running 
wheel following drug injection. There will be five 
experimental conditions. The rats in the five conditions 
will receive cocaine injections of either 0, 25, 50, 75, or 
100 μg/injection prior to testing. The researcher would 

like to assess the omnibus effect as well as the linear and 
quadratic trends in the data. She expects the means to be 
proportional to the following: h = {0.0, 0.3, 0.6, 0.9, 0.5}. 
That is, she assumes σ = 1. Use G*Power to determine the 
samples sizes required to detect (a) the omnibus effect, 
(b) the linear trend, and (c) the quadratic trend. Assume in 
all cases that power = .8 and α = .05. Note that the trend 
coefficients can be obtained from Table 18.A1.1.

Answers

1. (a) For the omnibus effect, f = .300. The test requires 
a total of 140 animals or 140/5 = 28 per condition.  
(b) For the linear trend, f = 0.226. The test requires a 

total of 156 animals or 156/5 ≈ 32 per condition. (c) 
For the quadratic trend, f = 0.167. The test requires a 
total of 284 animals or 284/5 ≈ 57 per condition.


