KNOWLEDGE CHEGK

MENTAL CALCULATIONS, FINDING A PERGENTAGE OF A QUANTITY

You should be able to handle questions such as the following, mentally, without the use of a calculator or any formal procedures.
a) What is 40% of 55 ?
b) A total of 83% of 600 schools participate in a regional athletics competition. How many schools do not participate?
c) Interest at 17.5% is to be added to a loan of $\$ 240$. How much interest is to be added?
d) A school's target for their upper primary children is that 65% of them should achieve at least a score of 105 in a standardized assessment of mathematics. If one year they have 180 children entering, how many must reach a score of 105 to achieve the target?

ANSWERS TO KNOWLEDGE CHECK 23

a) 22 .
b) 102 .
c) $\$ 42$.
d) 117 children.

DISGUSSION AND EXPLANATION OF KNOWLEDGE CHEGK 23

Since $40 \%=\frac{2}{5}$ and we can find a fifth of 55 very easily (11), the simplest approach with (a) is to think of the 40% as the equivalent fraction (two-fifths), so 40% of 55 is 22 .

Otherwise, to handle percentage calculations mentally, start from what you know, or can work out easily, and then work your way gradually to the required percentage. A good starting point is often 10%, which, because it's equal to a tenth, is usually very simple to find. For example, in (b), because 83% participate and so 17% do not $(100 \%-83 \%=17 \%)$, we need to work out 17% of 600 . Now 17% can be made up from $10 \%, 5 \%, 1 \%$ and 1%, all of which I can jot down instantly: 10% of 600 is $60 ; 5 \%$ is half of that, $30 ; 1 \%$ of 600 is just 6 (1 per 100). So 17% of $600=60+30+6+6=102$. To find the interest in (c) I would again start with 10%, then halve this to get 5%, and halve this to get 2.5%. Adding these will give 17.5% : $\$ 24+\$ 12+\$ 6=\$ 42$. In (d) we need 65% of 180 . Here I would make up the 65% from $50 \%, 10 \%$ and 5% : $90+18+$ $9=117$.

This ad hoc method is surprisingly efficient, even with percentage calculations that look unpromising. You can also involve subtraction if it helps. For example, to find 74% of 294 you do not really need a calculator, because you can work around 75\%:

50% of 294	$=147$	
25% of 294	$=73.5$	(half of 294)
75% of 294	$=220.5$	(half of the $50 \%)$
1% of 294	$=2.94$	(one hundredth)
74% of 294	$=217.56$	$(75 \%-1 \%$, i.e. $220.50-2.94)$

Notice that to find 1% of a number you have to divide by 100 . This results in all the figures moving two places to the right in relation to the decimal point. Notice also, when calculating a sum or difference involving decimals, it is safest to put in extra zeros to ensure that the numbers have the same number of figures after the decimal point (e.g. $147.0+73.5,220.50-2.94$).

SUMMARY OF KEY IDEAS

- To find a percentage of a quantity, if the percentage required is equivalent to a simple fraction (like $75 \%=\frac{3}{4}, 40 \%=\frac{2}{5}$) that can be worked out easily, then use that fraction.
- Otherwise, for mental and informal calculations of percentages of a quantity, build up the required percentage from percentages that are easy to calculate, such as $10 \%, 5 \%, 1 \%, 2 \%, 50 \%, 25 \%)$.

FURTHER PRACTICE

Do these questions without using a calculator, by mental and informal, ad hoc methods.
23.1 What is (a) 12.5% of 160 ? (b) 30% of 220 ?
23.2 A secondary school's target for an examination in English Language is that at least 78% of its students should achieve grade C or above. How many students is that out of a cohort of 240 ?
23.3 In a year group of 125 children, 40% achieved a standardized score of 105 or above and 30% achieved a standardized score of 100 to 104 inclusive in an assessment of mathematics. How many children achieved a scaled score of less than 100 ?

