Chapter 9: One-sample tests – R Scripts

Computing the one-sample z-test in R
Calculate the z-score:
z.score<-(498-489)/(100/sqrt(50))
z.score
[1] 0.6363961

Calculate the p-value and round it to three decimal places:
p<-round(2*pnorm(-abs(z.score),0,1),3)
p
[1] 0.525

Computing the Kolmogorov-Smirnov test in R
Import the data from the Ex9_2.csv data file into R:
Ex9_2<- read.csv(file.choose())
Print the data:

Ex9_2
   Scores
1      95
2      91
3      82
4     100
5      87
6      84
7      71
8      79
9      78
10     69
11     76
12     82
13     75
14     67
15     78
16     72
17     69
18     76
19     91
20     78
21     67
22     56
23     88
24     71
25     79
Before we compute the one-sample t-test, it is important to check whether our data is normally distributed using the ks.test() function (the one-sample Kolmogorov–Smirnov test). 
ks.test(Ex9_2$Scores, "pnorm", mean=mean(Ex9_2$Scores), sd=sd(Ex9_2$Scores))
	One-sample Kolmogorov-Smirnov test
data:  Ex9_2$Scores
D = 0.11765, p-value = 0.8794
alternative hypothesis: two-sided

Computing the one-sample t-test in R
t.test(dataset$sample1, mu=mean_value)

By default, R performs a two-tailed test.
t.test(Ex9_2$Scores,mu=70, conf.level = 0.05)
	One Sample t-test
data:  Ex9_2$Scores
t = 4.2234, df = 24, p-value = 0.0002992
alternative hypothesis: true mean is not equal to 70
5 percent confidence interval:
 78.31337 78.56663
sample estimates:
mean of x 
    78.44 

Computing one-tailed t-test in R
t.test(Ex9_2$Scores,mu=70, conf.level = 0.05, alternative = "greater")
This gives the following output:
	One Sample t-test
data:  Ex9_2$Scores
t = 4.2234, df = 24, p-value = 0.0001496
alternative hypothesis: true mean is greater than 70
5 percent confidence interval:
 81.85903      Inf
sample estimates:
mean of x 
    78.44 

Computing the effect size (Cohen’s d) in R
Calculate the sample mean:
meanRS<-mean(Ex9_2$Scores)
meanRS
[1] 78.44
Compute the sample standard deviation:
sdTS<-sd(Ex9_2$Scores)
sdTS
[1] 9.991997
Compute Cohen’s d:
cohenDST<-(meanRS-70)/sdTS
cohenDST
[1] 0.844676
We can also calculate the Cohen’s d measure by using the function cohensD(), which can be found in the lsr package.
install.packages("lsr")
library(lsr)
cohensD(Ex9_2$Scores, mu=70)
[1] 0.844676
Alternatively, we can use our second formula for Cohen’s d measure above, which takes into consideration only two values, the t-value (computed previously using the t.test() function) and the sample size (n):
4.2234/sqrt(25)
[1] 0.84468

Computing the two-tailed sign test in R
Install the BSDA package which contains the function SIGN.test():
install.packages("BSDA")
library(BSDA)
Upload the file Ex9_3.csv into R and then compute the sign test (two-tailed) for a median equal to £35,767:
SIGN.test(Ex9_3$Salaries,md=35767)


where Ex9_3$Salaries is the numeric vector and md=35767 represents the value of the population median specified by the null hypothesis.
The results are displayed below:

	One-sample Sign-Test
data:  TeachersSalaries$Salaries
[bookmark: _Hlk17304080]s = 6, p-value = 0.1153
alternative hypothesis: true median is not equal to 35767
95 percent confidence interval:
 34711.65 35853.41
sample estimates:
median of x 
      35250 
Achieved and Interpolated Confidence Intervals: 
                  Conf.Level   L.E.pt   U.E.pt
Lower Achieved CI     0.8847 34800.00 35500.00
Interpolated CI       0.9500 34711.65 35853.41
Upper Achieved CI     0.9586 34700.00 35900.00

Computing the one-tailed sign test in R
SIGN.test(Ex9_3$Salaries,md=35767, alternative = "less")
	One-sample Sign-Test
data:  TeachersSalaries$Salaries
s = 6, p-value = 0.05766
alternative hypothesis: true median is less than 35767
95 percent confidence interval:
     -Inf 35582.88
sample estimates:
median of x 
      35250 

Computing the one-sample Wilcoxon sign-rank test in R
Download the data file Ex9_4.csv and upload the file to R.
Compute the frequency for each category using the function table():
SR<-table(Ex9_4$Scores)

Display the results:
SR

 1  2  3  4 
 9 12 20 11 
Out of 52 students, 12 think that the statistical resources are somewhat difficult, and 20 found the resources somewhat easy.
Compute the one-sample Wilcoxon signed-rank test using the function wilcox.test():
wilcox.test(Ex9_4$Scores,mu=2.5)
Wilcoxon signed rank test with continuity
correction
data:  Ex9_4$Scores
V = 797.5, p-value = 0.3077
alternative hypothesis: true location is not equal to 2.5
where the first argument represents the data, and the second one represents the mean. By default, the significance level is set to 0.05, and the test is two-tailed.

Finding the confidence interval
wilcox.test(Ex9_4$Scores,mu=2.5, conf.int = TRUE, conf.level = 0.95)
	Wilcoxon signed rank test with continuity
	correction
data:  Ex9_4$Scores
V = 797.5, p-value = 0.3077
alternative hypothesis: true location is not equal to 2.5
95 percent confidence interval:
 2.499967 2.999914
sample estimates:
(pseudo)median 
      2.500055 

Computing the binomial one sample test in R
Download the data file Ex9_5.csv and upload the file to R.
Compute the frequency for each category using the function table():
freq<-table(Ex9_5$Clubs)

Display the results:
freq

 1  2 
10 30 
We see that 10 children selected a science club and 30 selected a sports club.
Compute the binomial test using the function binom.test():
binom.test(10,40, p=0.5)
	Exact binomial test
data:  10 and 40
number of successes = 10, number of trials = 40, p-value = 0.002221
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
 0.1269148 0.4119620
sample estimates:
probability of success 
                   0.25 
where the first argument represents the frequencies for the first category, the second argument represents the total number of possible selections, and p is the hypothesised probability of success. The confidence level is 0.05 and is set by default for this function.

The effect size for one sample binomial test (Cohen’s g)
Install and load the package “foreign”:
install.packages("foreign")
library(foreign)
Calculate the ratio of the frequencies for each category and save it as a vector, which is named ‘prop’:
prop<-freq/sum(freq)
prop
        1    2 
     0.25 0.75 
Compute the effect size, the Cohen’s g coefficient if p = 0.5:
CohenG<-unname(prop[1]-0.5)
CohenG
[1] -0.25

Computing the  statistic in R 
The R function chisq.test() can be used as follows:
chisq.test(x, p)
where x is a numeric vector (i.e. the observed frequencies) and p is a vector of probabilities of the same length as x.
Create the numeric vector ‘observed’ for the observed frequencies and the p-vector ‘p’ of probabilities for the expected frequencies:
observed<-c(8,24,8)
p<-c(13/40, 14/40, 13/40)

Run the test:
chisq.test(observed, p=c(13/40,14/40,13/40))
	Chi-squared test for given probabilities
data:  observed
X-squared = 10.989, df = 2, p-value = 0.004109
If we use the raw data (data file Ex9_6.csv), a table of frequencies must be created before running the test using the function table():
myfreq<-table(Ex9_6$Subjects)
myfreq
  Biology Chemistry   Physics 
       24         8         8 
[bookmark: _GoBack]To compute the chi-squared test using the table of frequencies, the first argument of the function chisq.test() will be the table of frequencies, saved as an object under the name myfreq:
chisq.test(myfreq, p=c(14/40,13/40,13/40))
	Chi-squared test for given probabilities
data:  myfreq
X-squared = 10.989, df = 2, p-value = 0.004109



