Chapter 4: Descriptive statistics – R scripts

Creating a table and an ungrouped frequency table in R
Create the data set:
x<-c(10, 12, 10, 8, 11, 8, 15, 11, 9, 10, 13)

Create a table with frequencies using the function table():
table(x)
x
 8 9 10 11 12 13 15
 2 1 3 2 1 1 1

Create a table with percentages using the function prop.table():
prop.table(table(x))
x
8 9 10 11 12 13 15
0.1818181 0.0909090 0.2727272 0.1818181 0.0909090 0.0909090 0.0909090

 Creating a grouped frequency table in R
Create a list of class boundaries named ‘bins’ using the function seq():
bins<-seq(6,16, by=2)
where seq(6,16, by=2) generates regular sequences starting at 2 and finishing at 16 with an increment of 2.
The data is then grouped into bins using the function cut():
xbins<-cut(x,bins)

where x is a numeric vector which is to be converted to a factor by cutting.
Produce the table in a default format using the function table():
table(xbins)

xbins
(6,8] (8,10] (10,12] (12,14] (14,16]
 2 4 3 1 1

Produce the same table in a different format using the function transform():
transform(table(xbins))

 xbins Freq
1 (6,8] 2
2 (8,10] 4
3 (10,12] 3
4 (12,14] 1
5 (14,16] 1

Produce a cumulative frequency distribution using the function cumsum():
cumsum(table(xbins))
 (6,8] (8,10] (10,12] (12,14] (14,16]
 2 6 9 10 11
The cumsum() function returns a vector whose elements are the cumulative sums.

Creating an ogive in R
Plot the cumulative frequency using the function plot():
plot(cumsum(table(xbins)), ylab="Cumulative frequencies", pch=19)

Create the cumulative frequency curve using the function lines():
lines(cumsum(table(xbins)), lty='dashed')
where the argument pch=19 is used to specify point shapes (‘solid circle’) and lty='dashed' is used to specify the line type (dashed line).

Creating a histogram in R
Create the histogram using the function hist():

hist(x,bins, freq = FALSE)

where x is a vector of values for which the histogram is desired. If freq=TRUE, the histogram shows the frequencies or the counts on the y-axis; if freq= FALSE, the y-axis shows the probability densities, and the histogram has a total area of 1.
Create the line density using the function lines():
lines(density(x))
where the density() function splits our data x into several small intervals and calculates the density for the midpoint of each interval.

Computing mode in R for interval variable
In base R there is no function called mode() for computing the mode. Instead, enter the following code in the RStudio Console:
Create the vector x with numerical values from Example 4.1:
X<-c(10,12,10,8,11,8,15,11,9,10,13)

Create a table called ‘temp’:
temp<-table(as.vector(x))

See how often each value occurs:
temp

 8 9 10 11 12 13 14 15
 2 1 3 2 1 1 1 1

Find the mode:
names(temp)[temp==max(temp)]
[1] "10"
The last input in R returns in temp's second row the actual value, in our 10, that has the highest count (3).

Computing mode in R for nominal data
Create a character vector named ‘subjects’ representing the top five after-school subjects for a small group of primary school children:
subjects<-c("Maths","Science","Maths","History","Art","Art","Music","Art")

Before calculating the mode, we need to convert the vector ‘subject’ into a non-distributed vector using the function as.vector() to then create a table of count:
temp<-table(as.vector(subjects))
temp

 Art History Maths Music Science
 3 1 2 1 1

Find the mode:
names(temp)[temp==max(temp)]
[1] "Art"

Computing the median in R
Create the vector x:
x<-c(10,12,10,8,11,8,15,11,9,10,13,14)

Calculate the median using the build-in function median():
median(x)
[1] 10.5

Computing the arithmetic mean in R
To calculate the arithmetic mean in R, we use the built-in function mean():
mean(x)
[1] 10.63636
If there are missing values in the data set, then the argument na.rm is used to remove the missing values from the input vector, and the function will be:
mean(x,na.rm=FALSE)

Computing the weighted arithmetic mean in R
Create the vector x:
x<-c(10,12,10,8,11,8,15,11,9,10,13,14)

Create a vector x1 using the function sort() which list only once the values in ascending order which appears in the dataset:
x1<-sort(x)
x1
 [1] 8 8 9 10 10 10 11 11 12 13 15

Create a vector named x2 containing the values whose weighted mean is to be computed:
x2<-c(8,9,10,11,12,13,15)

Create a vector for the weights (wt) and divided by the total number of values:
wt<-c(2,1,3,2,1,1,1)/11

Calculate the weighted mean using the function weighted.mean():
weighted.mean(x2, wt)
[1] 10.63636

Visualising the outliers
Create the vector x:
x<-c(10,12,10,8,11,8,15,11,9,10,13)
[bookmark: _GoBack]Create a box and whisker plot plot using the function boxplot() to check for outliers:
boxplot(x)

