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Figure 10.5  Predicted Probabilities for Discrete Cases
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# generate and plot predicted probabilities for discrete cases

predictions = predict.glm(obama.logit2, newdata = prediction.frame, 

                          type="response", se.fit=T)

# plot the results

plot(x=1:4, y=predictions$fit, ylim=c(0, 1), axes=F, 

     xlab="Voter Types (with Mean Democratic Party Sentiment)", 

     ylab="Probability of Obama Vote", pch=16)

segments(x0=1:4, y0=predictions$fit - 1.96*predictions$se.fit, 

         x1=1:4, y1=predictions$fit + 1.96*predictions$se.fit)

axis(side=1, at=1:4, 

     labels=c("Non-White Gun Owner", "White Gun Owner", 

     "Non-White Non-Gun Owner","White Non-Gun Owner"), cex.axis=.7)

axis(side=2, las=2)

box()

Box 10.1  Marginal Effects and Expected Changes in Probability

Although most political researchers like to get a handle on predicted probabilities, as we have just done, there 
is no agreed-upon format for succinctly summarizing logistic regression results in terms of probabilities. One 
commonly used approach is to report the so-called full effect of the independent variable on the probability of 
the dependent variable. The full effect is calculated by subtracting the probability associated with the lowest 
value of the independent variable from the probability associated with the highest value of the independent 
variable.

Another way of summarizing a relationship in terms of probabilities is to report the interval of the 
independent variable that has the biggest impact on the probability of the dependent variable. The largest 
marginal effect of the independent variable on the probability of the dependent variable is sometimes called 
the instantaneous effect. The effect of a one-unit change in the independent variable on the probability of the 




