
Chapter 5: Optimization

1. (a) The notation x ∈ [−4, 4] means that x is bounded, and that both boundary points are included in the
domain. That means we have to compare the value of the function at the critical points to the value of
the function at the boundary points to find the global maximum and global minimum. First we find the
critical points by taking the derivative, setting it equal to 0, and solving for x. The derivative is

f ′(x) = 12x3 − 12x2 − 72x.

If we set the derivative equal to 0, we can solve for x through factoring:

12x3 − 12x2 − 72x = 0,

12(x3 − x2 − 6x) = 0,

12x(x2 − x− 6) = 0,

12x(x2 − x− 6) = 0,

12x(x− 3)(x+ 2) = 0.

So the critical points are x = 0, x = 3, and x = −2. Next, we can check whether each critical point c
describes a local maximum, a local minimum, or a saddle point using the second derivative test. The
second derivative of the function is

f ′′(x) = 36x2 − 24x− 72.

c f ′′(c) Result
0 36(0)2 − 24(0)− 72 = −72 Local max

3 36(3)2 − 24(3)− 72 = 180 Local min

-2 36(−2)2 − 24(−2)− 72 = 120 Local min

Finally, we compare the local maximum to the boundary points to find the global maximum, and we
compare the local minimums to the boundary points to find the global minimum. At the boundary
points, the function is

f(−4) = 3(−4)4 − 4(−4)3 − 36(−4)2 = 448, f(4) = 3(4)4 − 4(4)3 − 36(4)2 = −64,

for the local maximum the function is

f(0) = 3(0)4 − 4(0)3 − 36(0)2 = 0,

and at the local minimums the function is

f(3) = 3(3)4 − 4(3)3 − 36(3)2 = −189, f(−2) = 3(−2)4 − 4(−2)3 − 36(−2)2 = −64.

So the global maximum occurs at the boundary point x = −4, and the global minimum occurs at x = 3.

(b) Since the domain is bounded and since the upper bound 3 is included in the domain (the parenthesis
around 0 means that it is not included in the domain) we have to compare the value of the function at
x = 3 to the value of the function at the critical points. To find the critical points, we take the derivative.
First note that the derivative can be broken up across subtraction:

g′(x) =
d

dx

(
x ln(x)

)
− d

dx
(x)
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=
d

dx

(
x ln(x)

)
− 1.

The product rule applies

g′(x) = x
d

dx

(
ln(x)

)
+ ln(x)

d

dx
(x)− 1,

= x
1

x
+ ln(x)− 1,

= 1 + ln(x)− 1

= ln(x).

Next we set the derivative equal to 0. We know that any logarithm of 1 is equal to 0, so the critical point
is x = 1. To test whether this point is a local max or a local min, we find the second derivative,

g′′(x) =
d

dx

(
ln(x)

)
=

1

x
,

and plug the critical point in:

g′(1) =
1

1
= 1.

Since the second derivative is positive at the critical point, x = 1 describes a local minimum. Finally we
compare the value of the function at the local min to the boundary point:

f(1) = (1) ln(1)− 1 = 1(0)− 1 = −1,

f(3) = (3) ln(3)− 1 = 2.3.

So x = 1 is the location of the global minimum, and x = 3 is the location of the global maximum.

2. (a) First we find the critical points by taking the derivative and setting it equal to 0:

f ′(x) = 3x2 − 15x+ 12 = 0

We can factor out a 3:
3(x2 − 5x+ 4) = 0.

Two numbers that add to -5 and multiply to 4 are -1 and -4, so the derivative factors to

3(x− 1)(x− 4) = 0.

That implies that the critical points are x = 1 and x = 4, both of which exist in the stated domain.
Next we check whether each one is a local minimum, local maximum, or a saddle point. The second
derivative is a pretty simple function in this case, so we use the second derivative test by finding the
second derivative, plugging in the critical points, and observing whether the second derivative is positive
or negative:

f ′′(x) = 6x− 15.

The second derivative at x = 1 is
f ′′(1) = 6(1)− 15 = −9,

so x = 1 represents a local maximum. The second derivative at x = 5 is

f ′′(4) = 6(4)− 15 = 9,

so x = 4 is a local minimum. Finally, we compare the value of the function at the critical points to the
value of the function at the boundary points:

f(0) = (0)3 − 15

2
(0)2 + 12(0) + 8 = 8,
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f(1) = (1)3 − 15

2
(1)2 + 12(1) + 8 = 13.5,

f(4) = (4)3 − 15

2
(4)2 + 12(4) + 8 = 0,

f(6) = (6)3 − 15

2
(6)2 + 12(6) + 8 = 26.

So x = 5 is the global minimum, but x = 6 is the global maximum.

(b) The Newton-Raphson algorithm, beginning at 2, yields the following iterations:

Iteration x f ′(x) f ′′(x) x− f ′(x)
f ′′(x)

0 2 -6 -3 0
1 0 12 -15 0.8
2 0.8 1.92 -10.2 0.988235294
3 0.988235294 0.106297578 -9.070588235 0.999954223
4 0.999954223 0.000412 -9.000274662 0.999999999
5 0.999999999 6.28643E-09 -9.000000004 1
6 1 0 -9 1

The Newton-Raphson algorithm, beginning at 5, yields the following iterations:

Iteration x f ′(x) f ′′(x) x− f ′(x)
f ′′(x)

0 5 12 15 4.2
1 4.2 1.92 10.2 4.011764706
2 4.011764706 0.106297578 9.070588235 4.000045777
3 4.000045777 0.000412 9.000274662 4.000000001
4 4.000000001 6.28643E-09 9.000000004 4
5 4 0 9 4

(c) i. The NR-algorithm might stop at a minimum or a maximum, and does not tell you which one it
arrives at.

ii. The NR-algorithm might stop at a local extreme point that is not a global extreme point. If the
global max or min is on the boundary, then the NR-algorithm will never return that point.

3. To find the global maximum of U(t), we first have to find the critical points. Technically, t is bounded below
by 0, so we have to compare the value of the function at the critical points to the value at 0. To find the
critical points, we first take the derivative:

U ′(t) =
d

dt

(
30 ln(t+ 1)− t2

10

)

= 30
d

dt

(
ln(t+ 1)

)
−

d
dt (t

2)

10
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=
30

t+ 1
− t

5
.

Next we set the derivative equal to 0 and we solve for t:

30

t+ 1
− t

5
= 0,

30

t+ 1
=
t

5
,

t(t+ 1) = 150,

t2 + t− 150 = 0.

This quadratic equation does not factor neatly, but we can use the quadratic formula to calculate the solutions.
The quadratic formula says that for an equation of the form Ax2 +Bx+ C = 0, x is

x =
−B ±

√
B2 − 4AC

2A
.

Let A = 1, B = 1, and C = −150. Then t is

t =
−1±

√
12 − 4(1)(−150)

2(1)

=
−1±

√
1 + 600

2

= −1

2
−
√

601

2
and −1

2
+

√
601

2

= −12.76 and 11.76.

t is days, so we throw the solution of t = −12.76 out because it doesn’t make sense. Our critical point is
t = 11.76 days. To demonstrate that this point describes a local maximum, we use the second derivative test.
the second derivative of U(t) is

U ′′(t) =
d

dt

(
30

t+ 1
− t

5

)
U ′′(t) =

−30

(t+ 1)2
− 1

5
.

Plugging in t = 11.76, we get

U ′′(11.76) =
−30

(11.76 + 1)2
− 1

5
= −.38.

So the second derivative test tells us that t = 11.76 is a local maximum. There are no additional critical
points to consider, but t is bounded below by t = 0. The function at t = 0 is

U(0) = 30 ln(0 + 1)− 02

10

= 30 ln(1)− 0 = 0.

The value of the function at t = 11.76 is

U(11.76) = 30 ln(11.76 + 1)− 11.762

10
= 62.6.

So t = 11.76 is also the global maximum. Therefore, the House Republicans maximize their utility of the
shutdown if it lasts 11.76 days.
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4. The sum of squared errors is the following function of β:

f(β) =

N∑
i=1

(y2i − 2βxiyi + β2x2i ).

In order to minimize this function, we first have to take the derivative with respect to β:

f ′(β) =
d

dβ

( N∑
i=1

(y2i − 2βxiyi + β2x2i )

)
.

Notice that a summation
∑

is the same thing as a sum. Since derivatives break up over addition, we can
rewrite the derivative of the sum as the sum of the derivatives of the addends:

f ′(β) =

N∑
i=1

d

dβ

(
y2i − 2βxiyi + β2x2i

)
.

We treat yi and xi as constants, so the derivative is

f ′(β) =

N∑
i=1

(−2xiyi + 2βx2i ).

To find the critical point, we set the derivative equal to 0 and solve for β:

N∑
i=1

(−2xiyi + 2βx2i ) = 0.

We can rewrite this by taking the sum of each part:

N∑
i=1

(−2xiyi) +

N∑
i=1

(2βx2i ) = 0.

Factors without a subscript i can be brought outside the summations:

−2

N∑
i=1

xiyi + 2β

N∑
i=1

x2i = 0.

And now we can simply solve for β:

2β

N∑
i=1

x2i = 2

N∑
i=1

xiyi,

β

N∑
i=1

x2i =

N∑
i=1

xiyi,

β =

∑N
i=1 xiyi∑N
i=1 x

2
i

.

Finally, to demonstrate that this critical point represents a local minimum, we find the second derivative of
the sum of squares:

f ′′(β) =
d

dβ

( N∑
i=1

(−2xiyi + 2βx2i )

)

=

N∑
i=1

d

dβ

(
− 2xiyi + 2βx2i

)

=

N∑
i=1

(2x2i ).

The second derivative does not depend on β, and the since the xi datapoints are squared, the sum
∑N

i=1(2x2i )
must be positive. Therefore the critical point describes a local minimum.
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5. (a) The trick here is to remember that we are taking the derivative with respect to µ. Notice that the
first term in the log-likelihood function does not contain µ, so it is a constant and it drops out of the
derivative. The derivative is

`′(µ) =
d

dµ

(
− .5

n∑
i=1

(xi − µ)2
)
.

The constant factor -.5 comes in front of the derivative:

`′(µ) = −.5 d

dµ

( n∑
i=1

(xi − µ)2
)
,

and the sum comes outside the derivative too since derivatives break up across addition:

`′(µ) = −.5
n∑

i=1

d

dµ
(xi − µ)2.

Here xi is a constant and µ is the variable, so the derivative becomes

`′(µ) = −.5
n∑

i=1

−2(xi − µ),

`′(µ) =

n∑
i=1

(xi − µ).

To simplify this function, the summation can be applied to each term in the parentheses:

`′(µ) =

n∑
i=1

xi −
n∑

i=1

µ,

and since µ does not have an index, it is added n times. Therefore it can be rewritten as

`′(µ) =

n∑
i=1

xi − nµ.

(b) We’ve done almost all the work in part (a). We set the derivative equal to 0,

`′(µ) =

n∑
i=1

xi − nµ = 0,

and solve for µ:
n∑

i=1

xi = nµ,

µ =

∑n
i=1 xi
n

.

(c) The first derivative again is

`′(µ) =

n∑
i=1

xi − nµ.
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So the second derivative is just
`′′(µ) = −n.

That value is negative everywhere, so the value at the critical point we derived in part (b) is negative,
and therefore the critical value refers to a local maximum. Since the domain of the normal distribution
is unbounded, this value is also the global maximum.

(d) The critical point

µ =

∑n
i=1 xi
n

is actually the mean of the sample of x values since it is the sum of the n values of x in the sample,
divided by n. So we are estimating the mean of the normal distribution with the mean of the sample.
This estimate makes perfect sense.
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