
Chapter 7: Multivariate Calculus

1. (a) A function with a domain of R6 and a range of R takes inputs which are ordered sextuplets (6 dimensional
numbers) and returns outputs which are unidimensional (“regular” real) numbers. An example of a
function of this type is

f(x1, x2, x3, x4, x5, x6) = x1 + x2 + x3 + x4 + x5 + x6.

This function would map the ordered sextuplet (1, 2, 3, 4, 5, 6) to the real number 1+2+3+4+5+6 = 21.
Incidentally, any linear regression model with one dependent variable and six independent variables is a
function that maps R6 → R, such as

f(x1, x2, x3, x4, x5, x6) = α+ β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6.

(b) A function with a domain of R3 and a range of R3 takes inputs which are ordered triplets and returns
outputs which are also ordered triplets. An example of a function of this type is

f(x1, x2, x3) =

(
x1 + x2 + x3, x1x2x3,

x1 + x2
x3

)
.

This function would map the ordered triplet (1, 2, 3) to the ordered triplet

(
1 + 2 + 3, 1× 2× 3, 1+2

3

)
=

(6, 6, 1).

(c) A function with a domain of R and a range of R4 takes inputs which are unidimensional real numbers
and returns outputs which are ordered quadruplets. An example of a function of this type is

f(x) = (2x, x2, x− 7, ex).

This function would map 2 to the ordered quadruplet

(
2(2), 22, 2− 7, e2

)
= (4, 4,−5, 7.39).

2. The first step to solving this problem is simply translating the set-builder notation into English. The domain
is

{(x, y) ∈ R2 |x+ y ≥ 0},
which translates to the set of all ordered pairs in the set of real-numbered ordered pairs such that the sum of
the two numbers in the ordered pair add to at least zero. In other words, we need to find a function that is
undefined if x+ y is negative.

The range is
{(x, y) ∈ R |f(x, y) ≥ 0},

which is the set of (unidimensional) real numbers that are greater than or equal to 0. That means that the
function must only be able to output numbers that are zero or positive.

A example of such a function is
f(x, y) =

√
x+ y.
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Since we are taking the square root of x + y, that sum must be either positive or zero. And the square root
function only returns values that are positive or zero. Therefore this function has the domain and range
specified in this problem.

3. (a) First, observe that we cannot simply plug in x = 3 and y = 1 as that would make the denominator equal
zero. But we can use a trick: the numerator,

x2 − xy + 6y2,

is quadratic and can be factored. Factoring a quadratic expression is conceptually trickier when it
contains two variables instead of one, but the math is basically the same. Pretend that y = 1. Then the
expression becomes

x2 − x+ 6,

and two numbers that add to -1 and multiply to 6 are -3 and 2, so this expression factors to (x−3)(x+2).
The more general expression factors to (x− 3y)(x+ 2y). So the limit can be rewritten as

lim
(x,y)→(3,1)

(x− 3y)(x+ 2y)

x− 3y

= lim
(x,y)→(3,1)

(x+ 2y).

Since we’ve cancelled out the denominator, it is now safe to plug in (3,1). The limit equals 3 + 2(1) = 5.

(b) Since both x and y are approaching infinity, a good strategy is to rewrite the limit so that as many terms
as possible become fractions with constants in the numerator and variables in the denominator. We saw
in chapter 4 that the limit of such a fraction is 0. This strategy is easier to implement here because
the function inside the limit is itself a fraction, and we can multiply or divide the top and bottom of
a fraction by the same thing without changing its value. With that in mind, let’s divide the top and
bottom by x2y2. The limit becomes

lim
(x,y)→(∞,∞)

2x2y2 + 3y2 − 7x− 15

7x2y2 − 5x2 + 2y + 10

1
x2y2

1
x2y2

= lim
(x,y)→(∞,∞)

2 + 3
x2 − 7

xy2 − 15
x2y2

7− 5
y2 + 2

x2y + 10
x2y2

Each of these newly created fractions has a constant in the numerator and variables in the denominator.
Since both variables go to infinity, these fractions all individually go to zero. The limit is equal to 2

7 .

4. (a) f(x, y) = (x+ y)
√
x− y

To find the gradient, we take the first partial derivative of the function with respect to each inde-
pendent variable, and then arrange these partial derivatives in a vector.
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The first partial derivative with respect to x,

fx(x, y) =
∂

∂x

(
(x+ y)

√
x− y

)
,

requires the product rule:

fx(x, y) =
∂

∂x

(
(x+ y)

)√
x− y + (x+ y)

∂

∂x

(√
x− y

)
.

This expression contains two partial derivatives. The first is

∂

∂x

(
(x+ y)

)
= 1.

Remember that we are taking the partial derivative with respect to x, meaning that we treat x as the
variable and y as a constant. Here the derivative of x is 1 and the derivative of y, treated as constant,
is 0. Next, the second partial derivative is

∂

∂x

(√
x− y

)
=

1

2
√
x− y

,

where again y does not enter into the calculation because it is being treated as a constant. Substituting
these two partial derivatives into the overall partial derivative gives us

fx(x, y) =
√
x− y +

x+ y

2
√
x− y

.

The first partial derivative with respect to y,

fy(x, y) =
∂

∂y

(
(x+ y)

√
x− y

)
,

requires nearly the same calculation as the partial derivative with respect to x. The only difference is
that the chain rule implies that we multiply the derivative of the square root by -1:

fy(x, y) =
√
x− y − x+ y

2
√
x− y

.

Therefore the gradient is

∇f(x, y) =


√
x− y + x+y

2
√
x−y

√
x− y − x+y

2
√
x−y

 .

(b) g(x, y) = ex
2+y2−2x+5y+7

Remember from chapter 4 that the derivative of ex is simply ex again, and that the chain rule tells
us that if f(x) = eg(x), then

f ′(x) = eg(x)g′(x).

With that in mind, the partial derivative with respect to x is

gx(x, y) = ex
2+y2−2x+5y+7

(
∂

∂x
(x2 + y2 − 2x+ 5y + 7)

)
,
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and the partial derivative with respect to y is

gy(x, y) = ex
2+y2−2x+5y+7

(
∂

∂y
(x2 + y2 − 2x+ 5y + 7)

)
.

All we have to do to find the gradient is to find

∂

∂x
(x2 + y2 − 2x+ 5y + 7) and

∂

∂y
(x2 + y2 − 2x+ 5y + 7)

and substitute them into the overall partial derivatives. Treating x as a variable and y as a constant
shows us that

∂

∂x
(x2 + y2 − 2x+ 5y + 7) = 2x− 2.

Treating y as a variable and x as a constant shows us that

∂

∂y
(x2 + y2 − 2x+ 5y + 7) = 2y + 5.

Therefore the gradient is

∇g(x, y) =

 (2x− 2)ex
2+y2−2x+5y+7

(2y + 5)ex
2+y2−2x+5y+7

 .

(c) h(x, y) = ln(x+
√
y)

Remember from chapter 4 that the derivative of ln(x) is 1
x again, and that the chain rule tells us

that if f(x) = ln

(
g(x)

)
, then

f ′(x) =
1

g(x)
g′(x) =

g′(x)

g(x)
.

With that in mind, the partial derivative with respect to x is

hx(x, y) =
1

ln(x+
√
y)

(
∂

∂x
(x+

√
y)

)
,

and the partial derivative with respect to y is

hy(x, y) =
1

ln(x+
√
y)

(
∂

∂y
(x+

√
y)

)
,

All we have to do to find the gradient is to find

∂

∂x
(x+

√
y) and

∂

∂y
(x+

√
y)

and substitute them into the overall partial derivatives. Treating x as a variable and y as a constant
shows us that

∂

∂x
(x+

√
y) = 1.

Treating y as a variable and x as a constant shows us that

∂

∂y
(x+

√
y) =

1

2
√
y
.

Therefore the gradient is

∇h(x, y) =


1

x+
√
y

1
2
√
y(x+

√
y)

 .
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(d) j(x, y) =
x2 + y2

x3 − 4xy − y2

Both partial derivatives require the quotient rule. The partial derivative with respect to x is

jx(x, y) =
(x3 − 4xy − y2) ∂

∂x (x2 + y2)− (x2 + y2) ∂
∂x (x3 − 4xy − y2)

(x3 − 4xy − y2)2
,

and the partial derivative with respect to y is

jy(x, y) =
(x3 − 4xy − y2) ∂

∂y (x2 + y2)− (x2 + y2) ∂
∂y (x3 − 4xy − y2)

(x3 − 4xy − y2)2
.

All we have to do to find these partial derivatives is calculate the smaller derivatives inside these expres-
sions. These derivatives are

∂

∂x
(x2 + y2) = 2x ,

∂

∂x
(x3 − 4xy − y2) = 3x2 − 4y,

∂

∂y
(x2 + y2) = 2y, and

∂

∂y
(x3 − 4xy − y2) = 2y − 4x.

Substituting into the overall partial derivatives, the gradient is

∇j(x, y) =


2x(x3−4xy−y2)−(3x2−4y)(x2+y2)

(x3−4xy−y2)2

2y(x3−4xy−y2)−(2y−4x)(x2+y2)
(x3−4xy−y2)2

 .

(e) k(x, y, z) = −4x5y3z2 − 3y2z4 + 7xz3 + 10y − 9z + 9

Since there are three independent variables, we have to find three partial derivatives: one with re-
spect to x, y, and z.

To find the partial derivative with respect to x, we treat y and z as constant. Then finding the derivative
is straightforward:

kx(x, y, z) =
∂

∂x

(
− 4x5y3z2 − 3y2z4 + 7xz3 + 10y − 9z + 9

)
= −20x4y3z2 + 7z3.

Similarly, the partial derivative with respect to y is

ky(x, y, z) =
∂

∂y

(
− 4x5y3z2 − 3y2z4 + 7xz3 + 10y − 9z + 9

)
= −12x5y2z2 − 6yz4 + 10,

and the partial derivative with respect to z is

kz(x, y, z) =
∂

∂z

(
− 4x5y3z2 − 3y2z4 + 7xz3 + 10y − 9z + 9

)
= −8x5y3z − 12y2z3 + 21xz2 − 9.

The gradient is

∇k(x, y, z) =


−20x4y3z2 + 7z3

−12x5y2z2 − 6yz4 + 10

−8x5y3z − 12y2z3 + 21xz2 − 9

 .
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(f) l(x, y, z) =
x2 − y2 + z2

ln(x)

The partial derivative with respect to x requires the quotient rule since x appears in the numerator
and the denominator:

lx(x, y, z) =
∂

∂x

(
x2 − y2 + z2

ln(x)

)
=

ln(x) ∂
∂x (x2 − y2 + z2)− (x2 − y2 + z2) ∂

∂x (ln(x))

ln(x)2

=
2x ln(x)− x2−y2+z2

x

ln(x)2

=
2x ln(x)

ln(x)2
−

x2−y2+z2

x

ln(x)2

=
2x

ln(x)
− x2 − y2 + z2

x ln(x)2
.

The partial derivatives of y and z do not require the quotient rule because neither y nor z appear in the
denominator. We can treat the denominator as a constant factor that can be brought outside of these
derivatives. The partial derivative with respect to y is

ly(x, y, z) =
∂

∂y

(
x2 − y2 + z2

ln(x)

)

=
1

ln(x)

∂

∂y
(x2 − y2 + z2)

=
−2y

ln(x)
,

and the partial derivative with respect to z is

lz(x, y, z) =
∂

∂z

(
x2 − y2 + z2

ln(x)

)

=
1

ln(x)

∂

∂z
(x2 − y2 + z2)

=
2z

ln(x)
.

The gradient is

∇l(x, y, z) =


2x

ln(x) −
x2−y2+z2

x ln(x)2

−2y
ln(x)

2z
ln(x)

 .

5. A gradient is a vector of the first partial derivatives. The partial derivative of f(x, y) with respect to x is

∂f

∂x
=

∂

∂x

(
(x2 − y2) ln(x+ y)

)

= (x2 − y2)
∂

∂x
ln(x+ y) + ln(x+ y)

∂

∂x
(x2 − y2)
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=
x2 − y2

x+ y
+ 2x ln(x+ y)

=
(x+ y)(x− y)

x+ y
+ 2x ln(x+ y)

= x− y + 2x ln(x+ y).

The partial derivative of f(x, y) with respect to y is

∂f

∂y
=

∂

∂y

(
(x2 − y2) ln(x+ y)

)

= (x2 − y2)
∂

∂y
ln(x+ y) + ln(x+ y)

∂

∂y
(x2 − y2)

=
x2 − y2

x+ y
− 2y ln(x+ y)

=
(x+ y)(x− y)

x+ y
− 2y ln(x+ y)

= x− y − 2y ln(x+ y).

Therefore the gradient of f(x, y) is

∇f(x, y) =

 x− y + 2x ln(x+ y)

x− y − 2y ln(x+ y)

 .
The Hessian is the matrix of second partial derivatives. We have to calculate the partial derivative with
respect to x and x again, the partial derivative with respect to y and y again, and the partial derivative with
respect to x and then y which must be equal to the partial derivative with respect to y then x. First, we
calculate the partial derivative with respect to x and x again:

∂2f

∂x2
=

∂2

∂x2

(
(x2 − y2) ln(x+ y)

)

=
∂

∂x

(
∂

∂x

(
(x2 − y2) ln(x+ y)

))
=

∂

∂x

(
x− y + 2x ln(x+ y)

)
= 1 + 2 ln(x+ y) +

2x

x+ y

=
−(x+ y)

x+ y
+ 2 ln(x+ y) +

2x

x+ y

=
−x− y + 2x

x+ y
−+2 ln(x+ y)

=
x− y
x+ y

+ 2 ln(x+ y).

Next, we calculate the partial derivative with respect to y and y again:

∂2f

∂y2
=

∂2

∂y2

(
(x2 − y2) ln(x+ y)

)

=
∂

∂y

(
∂

∂y

(
(x2 − y2) ln(x+ y)

))
=

∂

∂y

(
x− y − 2y ln(x+ y)

)
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= −1− 2 ln(x+ y)− 2y

x+ y

=
−(x+ y)

x+ y
− 2 ln(x+ y) +

2x

x+ y

=
−x− y + 2x

x+ y
− 2 ln(x+ y)

=
x− y
x+ y

− 2 ln(x+ y).

Finally, the partial derivative with respect to x then y is

∂2f

∂x∂y
=

∂2

∂x∂y

(
(x2 − y2) ln(x+ y)

)

=
∂

∂y

(
∂

∂x

(
(x2 − y2) ln(x+ y)

))
=

∂

∂y

(
x− y + 2x ln(x+ y)

)
= −1 +

2x

x+ y

=
−(x+ y)

x+ y
+

2x

x+ y

=
−x− y + 2x

x+ y

=
x− y
x+ y

.

So the Hessian of f(x, y) is

H

(
f(x, y)

)
=

 x−y
x+y + 2 ln(x+ y) x−y

x+y

x−y
x+y

x−y
x+y − 2 ln(x+ y)

 .

6. (a) The first partial derivative of the function with respect to x is

∂f(x, y)

∂x
=

∂

∂x

(
− x2 + xy − y2 + 2x+ y

)
= −2x+ y + 2.

The first partial derivative with respect to y is

∂f(x, y)

∂y
=

∂

∂y

(
− x2 + xy − y2 + 2x+ y

)
= x− 2y + 1.

So the gradient of f(x, y) is

∇f(x, y) =

[
−2x+ y + 2
x− 2y + 1

]
.
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(b) We now have to solve the following system of equations:{
−2x+ y + 2 = 0,

x− 2y + 1 = 0.

We can solve this system by solving the top equation for y,

y = 2x− 2,

and plugging in for y in the second equation:

x− 2(2x− 2) + 1 = 0,

x− 4x+ 4 + 1 = 0,

−3x+ 5 = 0,

3x = 5,

x =
5

3
.

Then plugging the solution for x back into the first equation solved for y, we get

y = 2(5/3)− 2 = 10/3− 6/3 =
4

3
.

So the ordered pair (x, y) =

(
5
3 ,

4
3

)
is a critical point for the function. Since we obtained only one

possible value of x, and this value implied only one value of y, that means that (x, y) =

(
5
3 ,

4
3

)
is the

only critical point.

(c) First, the second partial derivative with respect to x and x again is

∂f(x, y)

∂x
=

∂

∂x

(
− 2x+ y + 2

)
= −2

The second partial derivative with respect to y and y again is

∂f(x, y)

∂y
=

∂

∂y

(
x− 2y + 1

)
= −2.

Finally, the second partial derivative with respect to x then y (or y then x) is

∂f(x, y)

∂y
=

∂

∂y

(
− 2x+ y + 2

)
= 1.

So the Hessian is

H

(
f(x, y)

)
=

[
−2 1

1 −2

]
.

(d) First we check whether
fxx(−1,−4)fyy(−1,−4)− fxy(−1,−4)2 > 0,
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(−2)(−2)− (1)2 > 0,

4− 1 > 0,

3 > 0,

so the first condition is met. Next we check the sign of

fxx(−1,−4) + fyy(−1,−4) = −2 +−2 = −4 < 0.

So the critical point represents a local maximum.

7. The problem is to maximize the function

f(x, y) = 150x1/3y2/3

subject to the constraint that
300x+ 500y = 100000.

In order to apply the method of Lagrange multipliers, we first find the gradient of f(x, y). The partial
derivative with respect to x is

fx(x, y) =
∂

∂x
(150x1/3y2/3)

= 150y2/3
∂

∂x
(x1/3)

= 150y2/3
(

1

3
x−2/3

)
=

50y2/3

x2/3
.

The partial derivative with respect to y is

fy(x, y) =
∂

∂y
(150x1/3y2/3)

= 150x1/3
∂

∂y
(y2/3)

= 150x1/3
(

2

3
y−1/3

)
=

100x1/3

y1/3
.

The gradient is

∇f(x, y) =

 50y2/3

x2/3

100x1/3

y1/3

 .
Note that there are no critical points for this function. The point (0,0) does not make the gradient’s elements
equal 0 because it places 0 in the denominator of each partial derivative.

Next, we write the constraint function, replacing the constant 100,000 with a general function name g(x, y),

g(x, y) = 300x+ 500y.

10



The partial derivative of g(x, y) with respect to x is 300, and the partial derivative of g(x, y) with respect to
y is 500. So the gradient of g(x, y) is

∇g(x, y) =

[
300
500

]
.

Next we create a system of three equations by setting f(x, y) = λg(x, y), and including the constraint as well:

50y2/3

x2/3 = 300λ,

100x1/3

y1/3 = 500λ,

300x+ 500y = 100000.

To solve this system, let’s first solve the first two equations for λ then set them equal to each other. Dividing
both sides by 300, the first equation can be rewritten as

y2/3

6x2/3
= λ,

and dividing both sides by 500, the second equation can be written as

x1/3

5y1/3
= λ.

These two equations imply that
y2/3

6x2/3
=

x1/3

5y1/3
,

(y2/3)(5y1/3) = (x1/3)(6x2/3),

5y = 6x,

y =
6

5
x.

Finally we substitute for y in the last equation:

300x+ 500

(
6

5
x

)
= 100000,

300x+ 600x = 100000,

900x = 100000,

x =
100000

900
= 111.11.

Given this value of x, we can calculate y:

y =
6

5
(111.11) = 133.33.

We have no critical points to compare the point (111.11, 133.33) to, and it is our only optimum on the line
300x+ 500y = 100000. The value of the Cobb-Douglas production function at this point is

f(111.11, 133.33) = 150(111.11)1/3(133.33)2/3 = 18820.34.

Any other point on this line produces a lower value of f(x, y) than f(111.11, 133.33). Consider, for example,
the case in which x = 50. According to the constraint, the value of y must be

300(50) + 500y = 100000,

15000 + 500y = 100000,

500y = 85000,

11



y = 170.

The value of the Cobb-Douglas production function at the point (50,170) is

f(50, 170) = 150(50)1/3(170)2/3 = 16958.23.

Therefore the firm maximizes its profits by spending its resources on 111.11 units of labor and 133.33 units
of capital.

8. (a) The problem asks us to solve the definite double integral∫ 3

0

∫ 5

1

3x2 − 3y2 − 2xy dy dx.

Because neither set of bounds depends on a variable, these bounds can be considered in either order.
This integral is equal to the one in which the order of x and y are reversed:∫ 5

1

∫ 3

0

3x2 − 3y2 − 2xy dx dy.

To solve this double integral, we start by solving the innermost integral:∫ 3

0

(∫ 5

1

3x2 − 3y2 − 2xy dy

)
dx

=

∫ 3

0

(
3x2y − y3 − xy2

∣∣∣∣5
1

)
dx

=

∫ 3

0

(
[3x2(5)− (5)3 − x(5)2]− [3x2(1)− (1)3 − x(1)2]

)
dx

=

∫ 3

0

(
[15x2 − 125− 25x]− [3x2 − 1− x]

)
dx

=

∫ 3

0

12x2 − 124− 24x dx.

We now have a single definite integral to solve:∫ 3

0

12x2 − 124− 24x dx = 4x3 − 124x− 12x2
∣∣∣∣3
0

= 4(3)3 − 124(3)− 12(3)2 − (4(0)3 − 124(0)− 12(0)2) = −372.

(b) The problem asks us to solve ∫ 4

2

∫ ex

1

x

y
dy dx.

Note that, unlike part (a), here we have no choice in the order of the bounds. We must work with y
before x because the bounds of y themselves contain a function of x. We solve the inner-integral first:∫ 4

2

(∫ ex

1

x

y
dy

)
dx

12



In that inner-integral, we treat y as the variable and x as a constant. Since x is a constant factor, we
can bring it outside that integral: ∫ 4

2

x

(∫ ex

1

1

y
dy

)
dx

=

∫ 4

2

x

(
ln(y)

∣∣∣∣ex
1

)
dx1

=

∫ 4

2

x

(
ln(ex)− ln(1)

)
dx

=

∫ 4

2

x

(
x− 0

)
dx

=

∫ 4

2

x2 dx =
x3

3

∣∣∣∣4
2

43

3
− 23

3
=

64− 8

3
=

56

3
.

(c) The problem asks us to solve ∫ 1

0

∫ 3x2

0

√
x2 + y dy dx.

Note that, like part (b), we must work with y before x because the bounds of y themselves contain a
function of x. We solve the inner-integral first:∫ 1

0

(∫ 3x2

0

√
x2 + y dy

)
dx.

=

∫ 1

0

(∫ 3x2

0

(x2 + y)1/2 dy

)
dx.

We need to employ u-substitution to solve the inner-integral. Let u = x2 + y. Then du
dy = 1, and so

du = dy. We also change the bounds:

u(0) = x2 + 0 = x2, and u(x2) = x2 + (3x2) = 4x2.

Substituting, the integral becomes: ∫ 1

0

(∫ 4x2

x2

u1/2 du

)
dx

=

∫ 1

0

(
2

3
u3/2

∣∣∣∣4x2

x2

)
dx

=
2

3

∫ 1

0

(
(4x2)3/2 − (x2)3/2

)
dx

=
2

3

∫ 1

0

(
(43/2(x2)3/2 − (x2)3/2

)
dx

=
2

3

∫ 1

0

(
(43/2 − 1)(x2)3/2

)
dx

1Technically, the anti-derivative of 1
y

is ln(|y|). Here we can omit the absolute value because all of the numbers within the range of

the inner-integral are positive.
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=
2

3

∫ 1

0

7x3 dx

=
14

3

∫ 1

0

x3 dx =
14

3

(
x4

4

∣∣∣∣1
0

)
=

14

3

(
1

4
− 0

4

)
=

7

6
.

(d) The problem asks us to solve ∫ e4

1

∫ e5

1

ln(x) + ln(y)

xy
dx dy.

Like part (a), neither set of bounds depends on the other variable, so we can consider these bounds in
any order. Let’s consider the bounds of x first. Note that the y in the denominator can be considered to
be a constant factor that can be brought outside of this integral:∫ e4

1

1

y

(∫ e5

1

ln(x) + ln(y)

x
dx

)
dy.

We need to use u-substitution to solve the inner-integral. Let u = ln(x) + ln(y). Remember that in this
inner-integral, we are treating x as the variable and y as constant, so we take the partial derivative of u
with respect to x,

du

dx
=

1

x
, du =

1

x
dx.

Notice that the factor 1
x will cancel out of the integrand. We also change the bounds:

u(1) = ln(1) + ln(y) = ln(y), and u(e5) = ln(e5) + ln(y) = 5 + ln(y).

Substituting, the integral becomes ∫ e4

1

1

y

(∫ 5+ln(y)

ln(y)

u du

)
dy

=

∫ e4

1

1

y

(
u2

2

∣∣∣∣5+ln(y)

ln(y)

)
dy

=

∫ e4

1

1

2y

(
(5 + ln(y))2 − ln(y)2

)
dy

=

∫ e4

1

1

2y

(
25 + 10 ln(y) + ln(y)2 − ln(y)2

)
dy

=

∫ e4

1

1

2y

(
25 + 10 ln(y)

)
dy

=
1

2

∫ e4

1

25 + 10 ln(y)

y
dy.

Now we have to employ u-substitution again to solve this remaining integral, which treats y as the
variable. Let u = 25 + 10 ln(y). Then

du

dy
=

10

y
,

1

10
du =

1

y
dy.

14



Now the factor 1
y cancels out of the integrand. We replace the bounds:

u(1) = 25 + ln(1) = 25, and u(e4) = 25 + ln(e4) = 29.

Substituting, the integral becomes
1

2

∫ 29

25

u

(
1

10
du

)
=

1

20

u2

2

∣∣∣∣29
25

=
292 − 252

40
= 5.4.

9. (a) In order to demonstrate that a multivariate function is a joint PDF, we have to show that the function is
nonnegative for all ordered pairs in the domain, and that the multiple integral over the domain evaluates
to 1. First, note that the domain only contains nonnegative values of x and y, so

f(x, y) =
6

7

(
x2 +

xy

2

)
must also be nonnegative since it contains no subtraction or multiplication by negative numbers. Next
we have to demonstrate that the integral∫ 1

0

∫ 2

0

6

7

(
x2 +

xy

2

)
dy dx = 1.

The integral is solved using the following steps:

=
6

7

∫ 1

0

∫ 2

0

x2 +
xy

2
dy dx

=
6

7

∫ 1

0

(∫ 2

0

x2 +
xy

2
dy

)
dx

=
6

7

∫ 1

0

(
x2y +

xy2

4

∣∣∣∣2
0

)
dx

=
6

7

∫ 1

0

(
2x2 +

4x

4

)
−
(

0x2 +
0x

4

)
dx

=
6

7

∫ 1

0

2x2 + x dx

=
6

7

(
2

3
x3 +

x2

2

∣∣∣∣1
0

)
=

6

7

((
2

3
13 +

12

2

)
−
(

4

3
03 +

02

2

))
=

6

7

(
2

3
+

1

2

)
=

6

7

(
4

6
+

3

6

)
=

6

7

(
7

6

)
= 1.

So the function is indeed a joint PDF.
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(b) Now that we’ve demonstrated that f(x, y) is a joint PDF, we can calculate the probability that x and
y fall within certain bounds by plugging these new bounds into the multivariate definite integral and
finding the volume under the curve. In this case, the problem is to solve

P (0 < x < 0.5, 0 < y < x) =

∫ .5

0

∫ x

0

6

7

(
x2 +

xy

2

)
dy dx.

The integral is solved using the following steps:

=
6

7

∫ .5

0

∫ x

0

x2 +
xy

2
dy dx

=
6

7

∫ .5

0

(∫ x

0

x2 +
xy

2
dy

)
dx

=
6

7

∫ .5

0

(
x2y +

xy2

4

∣∣∣∣x
0

)
dx

=
6

7

∫ .5

0

(
x3 +

x3

4

)
−
(

0x2 +
0x

4

)
dx

=
6

7

∫ .5

0

(
5

4
x3
)
dx

=
15

14

∫ .5

0

x3 dx

=
15

14

x4

4

∣∣∣∣.5
0

=
15

14

(
.54

4
− 04

4

)
=

15

14
× 1

64
=

15

896
= 0.017.

(c) To find the marginal distribution of x, we integrate the joint PDF over the domain of y:

fx(x) =

∫ ∞
−∞

f(x, y) dy

=

∫ 2

0

6

7

(
x2 +

xy

2

)
dy

=
6

7

∫ 2

0

x2 +
xy

2
dy

=
6

7

(
x2y +

xy2

4

∣∣∣∣2
0

)

=
6

7

(
x2(2) +

x(2)2

4
− x2(0)− x(0)2

4

∣∣∣∣2
0

)
=

6

7

(
2x2 + x

)
=

12x2 + 6x

7
.
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(d) We repeat the calculations we conducted for part (c), but this time we integrate the joint PDF over the
domain of x:

fy(y) =

∫ ∞
−∞

f(x, y) dx

=

∫ 1

0

6

7

(
x2 +

xy

2

)
dx

=
6

7

(
x3

3
+
x2y

4

∣∣∣∣1
0

)
=

6

7

(
(1)3

3
+

(1)2y

4
− (0)3

3
− (0)2y

4

)
=

6

7

(
1

3
+
y

4

)
=

4 + 3y

14
.

(e) x and y are independent if and only if the product of their marginal distributions equals the joint PDF.
The product of the marginal distributions is

fx(x)fy(y)

=

(
12x2 + 6x

7

)(
4 + 3y

14

)
=

(12x2 + 6x)(4 + 3y)

98

=
48x2 + 24x+ 36x2y + 18xy

98
,

which does not equal the joint PDF 6
7

(
x2 + xy

2

)
. To see this explicitly, consider the point (1,0) which

is in the domain of the joint PDF. At this point, the product of the marginal distributions is

fx(1)fy(0) =
48(1)2 + 24(1) + 36(1)2(0) + 18(1)(0)

98
=

48 + 24

98
= 0.735.

And the joint PDF at (1,0) is

f(1, 0) =
6

7

(
(1)2 +

(1)(0)

2

)
=

6

7
= 0.857.

Since there are instances in which the product of marginal distributions does not equal the joint PDF,
these variables are not independent.

(f) The conditional distribution of x given y is given by the quotient of the joint PDF and the marginal
distribution of y:

fx|y(x, y) =
f(x, y)

fy(x, y)
.
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Since we know the joint PDF, and we’ve already derived the marginal distribution of y in part (d), we do
not need to take any more integrals – we simply plug these two known functions into the above formula:

fx|y(x, y) =

6
7

(
x2 + xy

2

)
4+3y
14

=
6

7

(
x2 +

xy

2

)
× 14

4 + 3y

=

12

(
x2 + xy

2

)
4 + 3y

=
12x2 + 6xy

4 + 3y
.

(g) The conditional distribution of y given x is given by the quotient of the joint PDF and the marginal
distribution of x:

fy|x(x, y) =
f(x, y)

fx(x, y)
.

Since we know the joint PDF, and we’ve already derived the marginal distribution of x in part (c), we do
not need to take any more integrals – we simply plug these two known functions into the above formula:

fy|x(x, y) =

6
7

(
x2 + xy

2

)
12x2+6x

7

=
6

7

(
x2 +

xy

2

)
× 7

12x2 + 6x

=

6

(
x2 + xy

2

)
12x2 + 6x

=
x2 + xy

2

2x2 + x

=
2x2 + xy

4x2 + 2x

=
2x+ y

4x+ 2
.

(h) The expected value of x is given by the following formula,

E(x) =

∫ ∞
−∞

x fx(x) dx,

where the infinite bounds stand in for whatever the domain of x happens to be, and fx(x) is the marginal
distribution of x. We found the marginal distribution of x in part (c), so in this case the expected value
is

E(x) =

∫ 1

0

x

(
12x2 + 6x

7

)
dx
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=
6

7

∫ 1

0

2x3 + x2 dx

=
6

7

(
x4

2
+
x3

3

∣∣∣∣1
0

)
=

6

7

(
14

2
+

13

3
− 04

2
− 03

3

)
=

6

7

(
1

2
+

1

3

)
=

6

7
× 5

6
=

5

7
= .714.

(i) The expected value of y is given by

E(y) =

∫ ∞
−∞

y fy(y) dy,

where the infinite bounds stand in for whatever the domain of y happens to be, and fy(y) is the marginal
distribution of y. We found the marginal distribution of y in part (d), so in this case the expected value
is

E(y) =

∫ 2

0

y

(
4 + 3y

14

)
dy

=
1

14

∫ 2

0

4y + 3y2 dy

=
1

14

(
2y2 + y3

∣∣∣∣2
0

)
=

1

14

(
2(2)2 + (2)3 − 2(0)2 − (0)3

)
=

1

14
(8 + 8) =

16

14
=

8

7
= 1.14.

(j) The variance of x is given by

V (x) =

∫ ∞
−∞

(x− c)2 fx(x) dx,

where c = E(y). We found the marginal distribution of x in part (c) and the expected value of x in part
(h), so in this case the variance is

V (x) =

∫ 1

0

(x− c)2
(

12x2 + 6x

7

)
dx.

To keep the calculation neater, let’s leave the expected value as c for now, and we will plug in .714 at
the end. The calculation proceeds as follows:

V (x) =
6

7

∫ 1

0

(x2 − 2cx+ c2)(2x2 + x) dx

=
6

7

∫ 1

0

2x4 − 4cx3 + 2c2x2 + x3 − 2cx2 + c2x dx
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=
6

7

∫ 1

0

2x4 − (4c− 1)x3 + 2c(c− 1)x2 + c2x dx

=
6

7

(
2

5
x5 − 4c− 1

4
x4 +

2c(c− 1)

3
x3 +

c2

2
x2
∣∣∣∣1
0

)
=

6

7

(
2

5
− 4c− 1

4
+

2c(c− 1)

3
+
c2

2

)
=

6

7

(
2

5
− 4(.714)− 1

4
+

2(.714)(.714− 1)

3
+
.7142

2

)
= 0.047.

Finally, the standard deviation of x is simply the square root of the variance:

SD(x) =
√
V (x) =

√
0.047 = 0.217.

(k) The variance of y is given by

V (y) =

∫ ∞
−∞

(y − d)2 fy(y) dy,

where d = E(y). We found the marginal distribution of y in part (d) and the expected value of y in part
(i), so in this case the variance is

V (y) =

∫ 2

0

(y − d)2
(

4 + 3y

14

)
dy.

Again, to keep the calculation neater, let’s leave the expected value as d for now, and we will plug in
1.14 at the end. The calculation proceeds as follows:

V (y) =
1

14

∫ 2

0

(y2 − 2dy + d2)(4 + 3y) dy

=
1

14

∫ 2

0

4y2 − 8dy + 4d2 + 3y3 − 6dy2 + 3d2y dy

=
1

14

∫ 2

0

3y3 + (4− 6d)y2 + (3d2 − 8d)y + 4d2 dy

=
1

14

(
3

4
y4 +

4− 6d

3
y3 +

3d2 − 8d

2
y2 + 4d2y

∣∣∣∣2
0

)
=

1

14

(
3

4
(2)4 +

4− 6d

3
(2)3 +

3d2 − 8d

2
(2)2 + 4d2(2)

)
=

1

14

(
3

4
(16) +

4− 6d

3
(8) +

3d2 − 8d

2
(4) + 8d2

)
=

1

14

(
12 +

8(4− 6d)

3
+ 2(3d2 − 8d) + 8d2

)
=

1

14

(
12 +

8[4− 6(1.14)]

3
+ 2[3(1.14)2 − 8(1.14)] + 8(1.14)2

)
= 0.313.

Finally, the standard deviation of y is simply the square root of the variance:

SD(y) =
√
V (y) =

√
0.313 = 0.559.
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(l) The covariance between x and y is given by

Cov(x, y) =

∫ ∞
−∞

∫ ∞
−∞

(x− c)(y − d) f(x, y) dy dx,

where c = E(x) and d = E(y), which we will plug in only at the end of the calculation.2 Substituting
the bounds of x and y and their joint distribution gives us

Cov(x, y) =

∫ 1

0

∫ 2

0

(x− c)(y − d)

[
6

7

(
x2 +

xy

2

)]
dy dx

=
6

7

∫ 1

0

∫ 2

0

(xy − dx− cy + cd)

(
x2 +

xy

2

)
dy dx

=
6

7

∫ 1

0

∫ 2

0

x3y − dx3 − cx2y + cdx2 +
x2y2

2
− dx2y

2
− cxy2

2
+
cdxy

2
dy dx

=
6

7

∫ 1

0

(
x3y2

2
− dx3y − cx2y2

2
+ cdx2y +

x2y3

6
− dx2y2

4
− cxy3

6
+
cdxy2

4

∣∣∣∣2
0

)
dx

=
6

7

∫ 1

0

(
x3(2)2

2
− dx3(2)− cx2(2)2

2
+ cdx2(2) +

x2(2)3

6
− dx2(2)2

4
− cx(2)3

6
+
cdx(2)2

4

)
dx

=
6

7

∫ 1

0

2x3 − 2dx3 − 2cx2 + 2cdx2 +
4x2

3
− dx2 − 4cx

3
+ cdx dx

=
6

7

(
x4

2
− dx4

2
− 2cx3

3
+

2cdx3

3
+

4x3

9
− dx3

3
− 2cx2

3
+
cdx2

2

∣∣∣∣1
0

)
=

6

7

(
(1)4

2
− d(1)4

2
− 2c(1)3

3
+

2cd(1)3

3
+

4(1)3

9
− d(1)3

3
− 2c(1)2

3
+
cd(1)2

2

)
=

6

7

(
1

2
− d

2
− 2c

3
+

2cd

3
+

4

9
− d

3
− 2c

3
+
cd

2

)
=

6

7

(
1

2
− 1.14

2
− 2(.714)

3
+

2(.714)(1.14)

3
+

4

9
− 1.14

3
− 2(.714)

3
+

(.714)(1.14)

2

)
= −0.007.

(m) After all that work to calculate the marginal distributions, the expected values, the variances and stan-
dard deviations, and the covariance, all we have left to do to calculate the correlation between x and y
is divide the covariance we calculated in part (l) by the standard deviations we calculated in parts (j)
and (k):

Corr(x, y) =
Cov(x, y)

SD(x)SD(y)

=
−0.007

0.217× 0.559
= −0.056.

2Please forgive the notational confusion here: d is used to denote both the expected value of y and the integration differential. The
term dx appears inside the integrand as x times the expected value of y, and also as always at the end of the integral. Please note that
every instance of dx inside the integrand refers to the former, not the latter.
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10. (a) The correlation between two random variables is the covariance of the two variables divided by the
product of their standard derivations. The standard deviations are the square roots of the variances:

Corr(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )

=
Cov(X,Y )√
V (X)

√
V (Y )

.

We know that Cov(X,Y ) = 5, V (X) = 4, and V (Y ) = 9 from the given information in this problem. So
we simply plug these numbers in:

Corr(X,Y ) =
Cov(X,Y )√
V (X)

√
V (Y )

=
5√
4
√

9
=

5

2× 3
=

5

6
= .833.

(b) We know from the problem that A = 3X − 3Y + 7. The variance of A is

V (A) = V (3X − 3Y + 7).

We can apply the rules of the variance of a sum from section 6.7 to find the value of this variance. First,
adding a constant to a random variable does not change the variance of that random variable. So the
variance becomes

V (A) = V (3X − 3Y ).

Next, the variance of a weighted sum of two random variables is given by

V (aX + bY ) = a2V (X) + b2V (Y )− 2abCov(X,Y ),

which in this case is

V (3X − 3Y ) = (3)2V (X) + (−3)2V (Y )− 2(3)(−3)Cov(X,Y ),

= 9(4) + 9(9) + 18(5) = 207.

(c) The problem tells us that B = 5− 2X + Y . The goal is to calculate

V (B) = V (5− 2X + Y ).

We again use the rules for variances listed in section 6.7. The constant addend does not change the
variance, so we can remove it,

V (B) = V (−2X + Y ),

and the remaining expression is a weighted sum of random variables, subject to the rule

V (aX + bY ) = a2V (X) + b2V (Y )− 2abCov(X,Y ),

which in this case is

V (−2X + Y ) = (−2)2V (X) + (1)2V (Y )− 2(−2)(1)Cov(X,Y )

= 4(4) + 9 + 4(5) = 45.
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(d) This problem asks us to calculate

Cov(A,B) = Cov

(
3X − 3Y + 7, 5− 2X + Y

)
Here we can apply the rules of covariances from section 7.4.4. First, adding a constant to either term of
the covariance does not change the covariance, so we can remove both constant addends:

Cov(A,B) = Cov

(
3X − 3Y, −2X + Y

)
.

Next we apply the rule for handling covariances of weighted sums of random variables,

Cov(aX + bY, cW + dZ) = acCov(X,W ) + adCov(X,Z) + bcCov(Y,W ) + bdCov(Y,Z),

which in this case is

Cov

(
3X−3Y, −2X+Y

)
= (3)(−2)Cov(X,X)+(3)(1)Cov(X,Y )+(−3)(−2)Cov(Y,X)+(−3)(1)Cov(Y, Y ).

= −6Cov(X,X) + 3Cov(X,Y ) + 6Cov(Y,X)− 3Cov(Y, Y ).

We also know that changing the order of the terms does not change the covariance, so we can combine
the two middle covariances:

−6Cov(X,X) + 3Cov(X,Y ) + 6Cov(X,Y )− 3Cov(Y, Y )

= −6Cov(X,X) + 9Cov(X,Y )− 3Cov(Y, Y ).

Finally, we know that the covariance of a variable with itself is the variance. So our covariance becomes

−6V (X) + 9Cov(X,Y )− 3V (Y )

= −6(4) + 9(5)− 3(9) = −6.

(e) Now that we know the variance of A, the variance of B, and the covariance between them, we can plug
these quantities into the formula for the correlation:

Corr(A,B) =
Cov(A,B)

SD(A)SD(B)

=
Cov(A,B)√
V (A)

√
V (B)

=
−6√

207
√

45
= −0.06.

Notice that the two transformations we applied, to generate A and B from X and Y , completely wiped
out most of the correlation between these two variables, even though X and Y are themselves highly
correlated.

11. (a) The first partial derivative of E(yi) with respect to xi1 is

∂E(yi)

∂xi1
=

∂

∂xi1

(
α+ β1xi1 + β2xi2 + β3x

2
i2 + β4x

3
i2 + β5xi3 + β6xi4 + β7xi3xi4

)
= β1.
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(b) When the variable under consideration is assumed to have a strictly linear effect – no curvilinear terms or
interactions – then the coefficient IS the first partial derivative. That means that the classic interpretation
of a regression coefficient,
“a one-unit increase in xi1 is associated with a β1 change in yi, on average, after controlling for the other
x variables in the model,”
is the interpretation of the first-partial derivative. To break this down further:

Classic regression interpretation How it relates to partial derivatives
“A one-unit increase in xi1” This part comes from the fact that a derivative is a slope. When

you calculate slope, you divide the rise over the run. The resulting
slope is a change in y for a 1-unit change in x, simply because you
can write any slope as a fraction of the slope over 1.

“is associated with” “Associated” simply means we haven’t taken steps to ensure this
model is giving us true causation.

“a β1 change in yi,” This also comes from the basic definition of a slope. Change in y
over change in x.

“on average,” This part refers to the fact that we are taking the derivative of
the expected value of yi instead of yi itself.

“after controlling for the other x
variables in the model.”

This phrase refers to the fact that we are taking a partial deriva-
tive instead of a regular derivative. We are only considering the
slope in one direction: the direction that refers to xi1.

It is often useful to approach the interpretation of regression models by thinking about derivatives instead
of coefficients.

(c) The first partial derivative of E(yi) with respect to xi2 is

∂E(yi)

∂xi2
=

∂

∂xi2

(
α+ β1xi1 + β2xi2 + β3x

2
i2 + β4x

3
i2 + β5xi3 + β6xi4 + β7xi3xi4

)
= β2 + 2β3xi2 + 3β4x

2
i2.

(d) If β2 = 0.653, β3 = −0.073, and β4 = 0.00054, then we can plug these values into the partial derivative:

∂E(yi)

∂xi2
= 0.653 + 2(−0.073)xi2 + 3(0.00054)x2i2

= 0.00162x2i2 − 0.146xi2 + 0.653.

Remember that xi2 is age, so it is reasonable to plot this function over a domain of xi2 from 18 to 90.
The graph is:
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The graph says that age generally has a negative effect on a person’s approval of Obama: that is, older
people approve of Obama less. But this effect is most highly pronounced for middle-aged people, with
the largest negative effect estimated for people who are about 45 years old. There is a smaller negative
effect of age for younger people and for older people. People over 85 years old actually have a positive
effect, although this effect is unlikely to be significantly different than zero. This graph would support a
theory that says that people’s political preferences change most in their 40s. In order to really draw these
inferences, however, we would need to graph the 95% confidence interval around this partial derivative
for every x.

(e) The first partial derivative of E(yi) with respect to xi4 is

∂E(yi)

∂xi4
=

∂

∂xi4

(
α+ β1xi1 + β2xi2 + β3x

2
i2 + β4x

3
i2 + β5xi3 + β6xi4 + β7xi3xi4

)
= β6 + β7xi3.

(f) If we plug in β6 = 1 and β7 = 3 then this partial derivative becomes

∂E(yi)

∂xi4
= 1 + 3xi3.

Since xi3 is binary, we can break down this partial derivative into two cases. For men the partial derivative
is 1 + 3(0) = 1, and for women the partial derivative is 1 + 3(1) = 4.

25



(g) That means that, in general, people who are more pro-choice are also more approving of Obama. For
every unit more pro-choice a man is, he is on average 1 unit more favorable towards Obama. But for
every unit more pro-choice a woman is, she is on average 4 units more favorable towards Obama. So this
issue has a more dramatic effect on Obama approval for women than for men.

12. (a) We know from the problem that
θ = β1x1 + β2x2 + δ.

That means that the variance of θ is

V (θ) = V (β1x1 + β2x2 + δ),

where the we will treat the β coefficients as constants and the other terms as random variables. The
formula for the variance of a weighted sum of three independent variables is

V (aX + bY + cZ) = a2V (X) + b2V (Y ) + c2V (Z) + 2abCov(X,Y ) + 2acCov(X,Z) + 2bcCov(Y,Z).

We apply this formula to V (θ) to get

V (β1x1 + β2x2 + δ) = β2
1V (x1) + β2

2V (x2) + V (δ) + 2β1β2Cov(x1, x2) + 2β1Cov(x1, δ) + 2β2Cov(x2, δ).

We can directly measure V (x1), V (x2), and Cov(x1, x2) from the data, and we assume that Cov(x1, δ)=0,
Cov(x2, δ)=0, and V (δ) = 1, so that this formula becomes

V (β1x1 + β2x2 + δ) = β2
1V (x1) + β2

2V (x2) + 2β1β2Cov(x1, x2) + 1.

(b) We know that y1 has the following regression equation:

y1 = δ1θ + ε1.

To find the variance of y1, we apply the formula for the variance of a weighted sum, again treating the
coefficient λ as a constant:

V (y1) = V (δ1θ + ε1)

= δ21V (θ) + V (ε1) + 2δ1Cov(θ, ε1).

We continue to assume that no error has a covariance with any other variable, so we can replace the
covariance in this formula with zero,

V (y1) = δ21V (θ) + V (ε1),

we also assume that every error has a variance equal to 1,

V (y1) = δ21V (θ) + 1.

We now replace V (θ) with the formula we derived in part (a):

V (y1) = δ21

(
β2
1V (x1) + β2

2V (x2) + 2β1β2Cov(x1, x2) + 1

)
+ 1.
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(c) We can understand the covariance of x1 and y1 by substituting y1’s linear equation for y1,

Cov(x1, y1) = Cov(x1, λ1θ + ε1),

and applying the rule of the covariance of a weighted sum,

Cov(aX + bY, cW + dZ) = acCov(X,W ) + adCov(X,Z) + bcCov(Y,W ) + bdCov(Y,Z),

Cov(x1, λ1θ + ε1) = λ1Cov(x1, θ) + Cov(x1, ε1).

Once again, we assume that the errors are independent from all other variables, so that the covariance
Cov(x1, ε1) = 0, leaving us with

λ1Cov(x1, θ).

The problem now requires us to find this remaining covariance. First, we replace θ with its linear model,

λ1Cov(x1, β1x1 + β2x2 + δ),

and then we apply the rule regarding the covariances of weighted sums:

λ1Cov(x1, β1x1 + β2x2 + δ) = λ1

(
β1Cov(x1, x1) + β2Cov(x1, x2) + Cov(x1, δ)

)
.

We can replace Cov(x1, x1) with V (x1), and as in part (a), we can directly measure V (x1), V (x2), and
Cov(x1, x2) from the data, and we assume that Cov(x1, δ)=0. The covariance is

Cov(x1, y1) = λ1β1V (x1) + λ1β2Cov(x1, x2).

The point of this exercise is to derive the formulas that underlie structural equation modeling. Most
practitioners will consider these formulas to be too complex to try to understand. But now you know
that all you need to derive these formulas is an understanding of covariance.
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