

© Andy Field www.discoveringstatistics.com 1

PRESENTING DATA
This handout is one of a series that accompanies An Adventure in Statistics: The Reality Enigma by me,
Andy Field. These handouts are offered for free (although I hope you will buy the book).1

Overview
In this handout we will look at how to do the procedures explained in Chapter 5 using R an open-source
free statistics software. If you are not familiar with RR there are many good websites and books that will
get you started; for example, if you like An Adventure In Statistics you might consider looking at my
book Discovering Statistics Using R.

Some basic things to remember
• RStudio: I assume that you're working with RStudio because most sane people use this software

instead of the native RR interface. You should download and install both R and RStudio. A few
minutes on Google will find you introductions to R Studio in the event that I don't write one, but
these handouts don't particularly rely on R Studio except in setting the working directory (see
below).

• Dataframe: A dataframe is a collection of columns and rows of data, a bit like a spreadsheet (but
less pretty)

• Variables: variables in dataframes are referenced using the $ symbol, so catData$fishesEaten would
refer to the variable called fishesEaten in the dataframe called catData

• Case sensitivity: RR is case sensitive so it will think that the variable fishesEaten is completely
different to the variable fisheseaten. If you get errors make sure you check for capitals or lower case
letters where they shouldn't be.

• Working directory: you should place the data files that you need to use for this handout in a folder,
then set it as the working directory by navigating to that folder when you execute the command
accessed through the SSeessssiioonn>>SSeett WWoorrkkiinngg DDiirreeccttoorryy>>CChhoooossee DDiirreeccttoorryy menu

1 This document is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, basically you can use it for teaching and non-profit activities but not meddle with
it.

© Andy Field www.discoveringstatistics.com 2

Packages used in this chapter
We install packages using the install.package("package name") function, so if you haven't already got
them installed execute the following commands:

iinnssttaallll..ppaacckkaaggeess("ggplot2")
iinnssttaallll..ppaacckkaaggeess("ggthemes")
iinnssttaallll..ppaacckkaaggeess("scales")
This installs the package ggggpplloott22, which we use to plot graphs. In the Chapter Zach is taught about
Edward Tufte's guidelines for presenting data, the package ggggtthheemmeess gives us access to a Tufte-inspired
theme for ggplot2 to use when generating plots, and the package ssccaalleess is needed to plot percentage
data such as in pie charts. Once installed we need to initialise these packages in the current RR session by
executing the library(packagename) function as follows.

lliibbrraarryy(ggplot2)
lliibbrraarryy(ggthemes)
lliibbrraarryy(scales)

The data
In the book, Zach has attended a recruitment event for JIG:SAW in which Rob Nutcot has presented
various graphs. Rob's graphs are horrible and Milton takes Zach to visit Dr. Tuff who teaches him how to
present data properly. This handout looks at how to create graphs that would keep Dr Tuff more or less
happy. (We will recreate the Dr Tuff friendly graphs from the book chapter.) The data set is too big to
enter manually so instead we will read the data in from the csv file on the companion website for the
book. To do this, execute the command below, which uses the file.choose() function to open a dialog
box so that you can navigate to the file that you want to open, which in this case will be AiS Ch 05
JIGSAW Data.csv. The rest of the command tells R to import this file into a dataframe called jigsaw

jigsaw<-rreeaadd..ccssvv(ffiillee..cchhoooossee())
We can use the head() function to look at the top of the data file. Executing the command below will
display the top 10 lines of the jjiiggssaaww dataframe. If you want to look at a different number of lines then
change the number 10, and if you want to see the whole data then execute the name of the dataframe
(jjiiggssaaww) rather than using the head() function.

hheeaadd(jigsaw, 10)
ID Employee Job_Type Footspeed Strength Vision Sex
1 1 JIG:SAW Employee Scientists 13.88 1161.000 1.3444883 Female
2 2 JIG:SAW Employee Scientists 17.34 1141.000 0.3899555 Male
3 3 JIG:SAW Employee Scientists 14.06 1174.000 0.7710037 Female
4 4 Non-Employee Scientists 21.84 1320.974 0.6463387 Male
5 5 JIG:SAW Employee Scientists 15.53 1112.000 0.3478982 Male
6 6 Non-Employee Scientists 16.27 1153.050 0.4058432 Male
7 7 JIG:SAW Employee Scientists 14.52 1185.000 0.3562858 Female
8 8 JIG:SAW Employee Scientists 12.22 1095.000 0.7325945 Female
9 9 Non-Employee Scientists 16.59 1071.825 0.5139766 Female
10 10 Non-Employee Scientists 13.88 1217.723 0.4381180 Female
Looking at the top 10 cases you will see that the dataframe contains 7 variables:

• IIDD: identifies the participant.

• EEmmppllooyyeeee: codes whether a participant worked for JIG:SAW or not (this variable is known as a
factor).

© Andy Field www.discoveringstatistics.com 3

• JJoobb__TTyyppee: codes the type of job the participant had (all of the top 10 were scientists but if you look
at the whole data you will see other job descriptions).

• FFoooottssppeeeedd: this variable contains the participants' footspeed (mph).

• SSttrreennggtthh: this variable contains the participants' maximal push force (N).

• VViissiioonn: this variable contains the participant's visual acuity scores.

• SSeexx: this variable codes the participant's biological sex as male or female.

As a slight inconvenience, the graphs involving the variable SSeexx in the book are ordered with Male as the
first category and female as the second. When R reads the data in it creates factors (variables coding
group membership) alphabetically, which means that the order of categories for SSeexx will be Female then
Male: the opposite way around to the book. This difference will confuse/annoy some people, and if
you're one of those people you should remove the potential stress and re-order the variable SSeexx by
executing this command.

jigsaw$Sex<-ffaaccttoorr(jigsaw$Sex, lleevveellss(jigsaw$Sex)[cc(2, 1)])
This command uses the factor() function to recreate the SSeexx variable in the jjiiggssaaww dataframe. The first
term in the function (jigsaw$Sex) tells it to create jigsaw$Sex from itself, and the second term
(levels(jigsaw$Sex)[c(2, 1)]) tells it to set the levels of the variable to be the same as those for jigsaw$Sex
but in the order 2, 1. In other words it reverses the order from Female, Male to Male, Female.

ggplot 2
We are going to create all of the graphs in this tutorial using Hadley Wickham's ggplot2 package
because it's awesome. However, it is so awesome that there is a lot to explain. Too much to get into
here. I have a lengthy chapter in my book Discovering Statistics Using R, and Hadley has his own book
which I think is really good (I believe a second edition is due 2016). For this tutorial I will simply show you
the code for the graphs in my book An Adventure in Statistics and explain what each bit does without
getting into the underlying architecture of ggplot2.

Bar graphs
To obtain a bar chart of mean strength by the person's biological sex and whether or not they worked at
JIG:SAW we could execute the following R code. Note that resulting graph matches Dr Tuff's graphs in
Figure 5.4 in An Adventure in Statistics.

strengthBar <- ggggpplloott(jigsaw, aaeess(Employee, Strength, fill = Sex))

strengthBar + ssttaatt__ssuummmmaarryy(fun.y = mean, geom = "bar", position = "dodge") + ssttaatt__ssuummmmaarryy(fun.data
= mean_sdl, geom = "pointrange", position = ppoossiittiioonn__ddooddggee(width = 0.90)) + llaabbss(x = "Employee Stat
us", y = "Mean Maximal Push Force (N)") + ccoooorrdd__ccaarrtteessiiaann(ylim = cc(0, 3000)) + ssccaallee__yy__ccoonnttiinnuuoouuss(bre
aks = sseeqq(0, 3000, 200)) + tthheemmee__ttuuffttee() + ssccaallee__ffiillll__bbrreewweerr(palette = "YlGnBu")

There's a lot to unpick here. The first line creates an object called strengthbar using the ggplot()
function. Within this function we specify the dataframe that we want to use (jjiiggssaaww), and then within the
aes() function we specify the variable that we want on the x-axis (EEmmppllooyymmeenntt), the variable we want on
the y-axis (SSttrreennggtthh), and the variable we want to fill with different colours (SSeexx). This line of code creates
the basic graph object, we now need to add things to it.

The second block of commands takes the basic graph object and adds layers to it. Let's break this
command down piece by piece:

© Andy Field www.discoveringstatistics.com 4

• strengthBar +: tells R to take the object strengthBar, which we created in the first command and
add stuff to it. The following commands specify different things that we are adding (hence all of the
+ symbols)

• stat_summary(fun.y = mean, geom = "bar", position = "dodge"): This command uses the
stat_summary() function to create bars on the graph. First we tell it that we want to use the function
'mean', which will give us the mean values of whatever we're plotting on the y-axis (fun.y = mean),
then we tell it to display the mean using bars (geom = "bar"), finally we tell it that we don't want to
allow these bars to overlap (position = "dodge"). This final instruction is important because we've
asked (when we created the object strengthBar) to use the variable SSeexx to produce different bars
for males and females, so we don't want these overlapping.

• stat_summary(fun.data = mean_sdl, geom = "pointrange", position = position_dodge(width =
0.90)): This command uses the stat_summary() function to add error bars to the graph. First we tell
it that we want to use the function 'mean_sdl', which will give us the standard deviation values of
whatever we're plotting on the y-axis (fun.data = mean_sdl), then we tell it to display the standard
deviation using a vertical line (geom = "pointrange"), finally we again use dodge to make sure that
the error bars don't clash on the horiozontal axis, and set the width (position =
position_dodge(width = 0.90)).

• labs(x = "Employee Status", y = "Mean Maximal Push Force (N)"): This command adds labels to
the x- and y-axes. Note that the labels need to be in speech marks.

• coord_cartesian(ylim = c(0, 3000)): This command sets the limits of the y-axis to be 0 and 3000.

• scale_y_continuous(breaks = seq(0, 3000, 200)): This command sets the y-axis to run from 0 to 3000
in intervals of 200.

• theme_tufte(): this function applies a template form the ggggtthheemmeess package that is based on Tufte's
principles of data visualisation.

• scale_fill_brewer(palette = "YlGnBu"): This command sets the fill colours to be the same as the
book - it overrides the default fill colours.

Saving graphs
If you want to save the graph (and this applies to subsequent graphs in this handout), you can use the
ggsave() function. You specify the name of the file that you want to use in speech marks. You must
remember to include the file extension because ggplot2 uses this file extension to determine the format
to save in; I have used .png to save as a PNG file but you can save as lots of different formats including
the widely used .pdf, .jpeg, .tiff, and .bmp. The other terms in the function specify that I want to save a
file that is 7 wide by 5 high, and the units of measurement is inches. This will produce an image 7 × 5
inches, will be a good size for this image. The image will be saved in the current working directory with
the name given in the function (in this case JIGSAW bar chart.png).

ggggssaavvee("JIGSAW bar chart.png", width = 7, height = 5, units = "in")

Line graphs
To produce the same graph but using lines rather than bars we could execute the following R code.
Note that resulting graph matches Dr Tuff's graphs in Figure 5.5 in An Adventure in Statistics.

strengthLine <- ggggpplloott(jigsaw, aaeess(Employee, Strength, colour = Sex))

strengthLine + ssttaatt__ssuummmmaarryy(fun.y = mean, geom = "point", size = 4) + ssttaatt__ssuummmmaarryy(fun.y = mean, ge

© Andy Field www.discoveringstatistics.com 5

om = "line", aaeess(group= Sex)) + llaabbss(x = "Employment", y = "Mean Maximal Push Force (N)", colour = "
Sex") + ccoooorrdd__ccaarrtteessiiaann(ylim = cc(0, 2000)) + ssccaallee__yy__ccoonnttiinnuuoouuss(breaks = sseeqq(0, 2000, 500)) + tthheemmee__ttuuff
ttee()

The first line is exactly the same as before except we've changed the name of the object we're creating
to be strengthLine and we're asking that the colour rather than the fill be varied by biological sex (this is
because bars on a bar chart can have a fill colour, but lines cannot). The rest is quite similar to with the
bar chart so I'll point out the differences and you can compare and contrast.

• strengthLine +: again tells R to take the object strengthLine, which we created in the first command
and add stuff to it.

• stat_summary(fun.y = mean, geom = "point", size = 4): This command specifies that we want the
mean but note now that instead of bars we have asked for dots ("point") and specified the size of
these dots to be 4.

• stat_summary(fun.y = mean, geom = "line", aes(group= Sex): This command again specifies that
we want the mean but this times sets the geom to be a line (which will connect the dots added by
the previous command). We have also specified that we want separate lines for different categories
of biological sex (aes(group= Sex)).

• labs(x = "Employment", y = "Mean Maximal Push Force (N)", colour = "Sex"): This command adds
labels to the x- and y-axes, but also for the colour aesthetic, which means that the legend telling us
which colour represents which biological sex will be labelled Sex.

• coord_cartesian(ylim = c(0, 2000)): This command sets the limits of the y-axis to be 0 and 2000.

• scale_y_continuous(breaks = seq(0, 2000, 500)): This command sets the y-axis to run from 0 to 2000
in intervals of 500.

• theme_tufte(): same as before.

Boxplots (Box-Whisker diagrams)
Zach also showed Dr Tuff a graph of footspeed by whether or not the person was employed by JIG:SAW
(Figure 5.6 in the book). To produce the version that Dr Tuff produced, we can execute the following
commands.

footBox <- ggggpplloott(jigsaw, aaeess(Employee, Footspeed))
footBox + ggeeoomm__bbooxxpplloott() + llaabbss(x = "Employee Status", y = "Footspeed (mph)") + tthheemmee__ttuuffttee()

The first line is similar to before. We create a plot object called footBox and then within the ggplot()
function we specify the dataframe to be used (jjiiggssaaww) and within the aes() function specify the variable
that we want on the x-axis (EEmmppllooyymmeenntt), and the variable we want on the y-axis (FFoooottssppeeeedd).

• footBox +: again tells R to take the object footBox, which we created in the first command and add
stuff to it.

• geom_boxplot(): This command specifies that we want a boxplot of the data.

• labs(x = "Employee Status", y = "Footspeed (mph)"): This command adds labels to the x- and y-
axes.

• theme_tufte(): applies a Tufte-inspired theme.

© Andy Field www.discoveringstatistics.com 6

Scatterplots

Subsetting data
Zach showed Dr Tuff a graph of footspeed against strength in people employed at JIG:SAW. Therefore,
we want to work only with the data from JIG:SAW employees. We can do this by creating a new
dataframe that is a subset of the whole dataframe using the subset() function. This command creates a
new dataframe called employees. It does this using the subset() function, within which we specify the
data frame that we want to subset (jjiiggssaaww) and a logical argument that tells RR what cases to retain. In this
case I have used Employee == "JIG:SAW Employee", which means that if the value of the variable
EEmmppllooyyeeee is equal to "JIG:SAW Employee" then we keep it in the new dataframe. The resulting
dataframe will be the same as the jjiiggssaaww dataframe except that it will only contain cases for whom the
value of the variable EEmmppllooyyeeee is is equal to "JIG:SAW Employee". Use head() again to look at the
dataframe.

employees<-ssuubbsseett(jigsaw, Employee == "JIG:SAW Employee")

Scatterplots
Having created a new dataframe containing only the JIG:SAW employees, we can use this to plot the
scatterplot that Dr Tuff produced (Figure 5.8), by executing the following commands.

scatter <- ggggpplloott(employees, aaeess(Footspeed, Strength))

scatter + ggeeoomm__ppooiinntt(shape = 16, size = 4, alpha = 0.5) + ggeeoomm__ssmmooootthh(method = "lm", fill ="lightblue
", alpha = 0.4) + llaabbss(x = "Footspeed (mph)", y = "Maximal Push Force (N)") + ccoooorrdd__ccaarrtteessiiaann(ylim = cc
(0, 5000)) + ssccaallee__yy__ccoonnttiinnuuoouuss(breaks = sseeqq(0, 5000, 500))+ tthheemmee__ttuuffttee()

The first line is similar to before. We create a plot object called scatter and then within the ggplot()
function we specify the dataframe to be used (eemmppllooyyeeeess), and within the aes() function specify the
variable that we want on the x-axis (FFoooottssppeeeedd) and the variable we want on the y-axis (SSttrreennggtthh).

• scatter +: again tells R to take the object scatter, which we created in the first command and add
stuff to it.

• geom_point(shape = 16, size = 4, alpha = 0.5): This command specifies that we want to plot data
as points, we specify a shape for those points (shape = 16 will give us circles), a size. Importantly I
have set the points to be semi-transparent by setting alpha to 0.5 (50% transparency). This is
because there is a lot of overlap in the data points and having each point as semi-transparent
means that we;'ll be able to see these areas of overlap as darker circles.

• geom_smooth(method = "lm", fill ="lightblue", alpha = 0.4): This command plots the line on the
graph using the method 'lm' (which stands for linear model). This basically plots a linear regression
line and a confidence interval around it. I've specified the shading of this confidence interval to be
lightblue with 40% transparency (alpha = 0.4) so that it doesn't obscure the data.

• labs(x = "Footspeed (mph)", y = "Maximal Push Force (N)"): This command adds labels to the x-
and y-axes.

• coord_cartesian(ylim = c(0, 5000)): This command sets the limits of the y-axis to be 0 and 5000.

• scale_y_continuous(breaks = seq(0, 5000, 500)): This command sets the y-axis to run from 0 to 5000
in intervals of 500.

• theme_tufte(): applies a Tufte-inspired theme.

© Andy Field www.discoveringstatistics.com 7

Pie charts
Dr Tuff will baste your face with butter if you attempt a pie chart, however, like Milton did in the book
you can create a bar chart of percentage data (Figure 5.10 in the book), by executing the following
commands. For this to work you need to have referenced the package scales so make sure you have
executed library(scales).

jobHistogram <- ggggpplloott(employees, aaeess(Job_Type))
jobHistogram + ggeeoomm__bbaarr(aaeess(y = (..count..)/ssuumm(..count..)), fill = "lightblue") + ssccaallee__yy__ccoonnttiinnuuoouuss(label
s = ppeerrcceenntt__ffoorrmmaatt()) + llaabbss(x = "Job Type", y = "Percent") + tthheemmee__ttuuffttee()

We're again interested in only the JIG:SAW employees so use the eemmppllooyyeeeess dataframe. The first line is
similar to before. We create a plot object called jobHistogram, and then within the ggplot() function we
specify the dataframe to be used (eemmppllooyyeeeess), and within aes() specify the variable that we want on the
x-axis (JJoobb__TTyyppee).

• jobHistogram +: again tells R to take the object jobHistogram, which we created in the first
command and add stuff to it.

• geom_bar(aes(y = (..count..)/sum(..count..)), fill = "lightblue"): This command specifies that we want
to plot data as bars, we specify that we want to plot the count divided by the sum of counts, which
gives us the proportion. We specify to fill the bars in the colour lightblue.

• scale_y_continuous(labels = percent_format()): this command sets the y-axis to express the
proportions from the previous command as percentages.

• labs(x = "Job Type", y = "Percent"): This command adds labels to the x- and y-axes.

• theme_tufte(): applies a Tufte-inspired theme.

Closing notes
The possibilities with ggplot2 are endless and we have only scratched the surface, but hopefully this
handout gives you a flavour of the power that ggplot2 has and gets you started with looking at more
detailed resources.

This handout is written to be used in conjunction with: Field, A. P. (2016). An adventure in statistics; the
reality enigma. London: Sage.

