
Chapter 10

Evaluation of model fit and
hypothesis testing

10.1 WHO’s reported novel disease outbreaks

Suppose that you are interested in modelling the number of outbreaks of novel diseases that the
WHO reports each year. Since these outbreaks are of new diseases, you assume that you can
model the outbreaks as independent events, and hence decide to use a Poisson likelihood; Xt ∼
Poisson(λ), where Xt is the number of outbreaks in year t, and λ is the mean number of outbreaks.

Problem 10.1.1. You decide to use a Γ(3, 0.5) prior for the mean parameter (λ) of your Poisson
likelihood (where a Γ(α, β) is defined to have a mean of α

β ). Graph this prior.

This can be done in R using the following command,

curve(dgamma(x, 3, 0.5), 0, 20, xlab='lambda', ylab='pdf')

Problem 10.1.2. Suppose that the number of new outbreaks over the past 5 years is X =
(3, 7, 4, 10, 11). Using the conjugate prior rules for a Poisson distribution with a gamma prior,
find the posterior and graph it.

Hint: look at Table 9.1 in the main text.

The posterior distribution is given by a Γ(3 +
∑5

t=1Xt, 0.5 + 5) distribution. This can be graphed
in R using,

X <- c(3, 7, 4, 10, 11)

curve(dgamma(x, 3 + sum(X), 0.5 + length(X)),0 , 20, xlab='lambda', ylab='pdf')

It has a peak at <∼ 7, near to the mean of the data.

Problem 10.1.3. Generate 10,000 samples from the posterior predictive distribution, and graph
the distribution. To do this we first independently sample a value λi from the posterior distribution,
then sample a value of X from a Poisson(λi) distribution. We carry out this process 10,000 times.
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Hint: use R’s rgamma and rpois functions to draw (pseudo-)independent samples from the gamma
and Poisson distributions respectively.

I prefer to do this by creating a function in R that implements the above then plots the result,

fPosteriorPredictive <- function(numSamples, alpha, beta){

X <- vector(length=numSamples)

for(i in 1:numSamples){

aLambda <- rgamma(1, alpha, beta)

X[i] <-rpois(1, aLambda)

}

return(X)

}

PPC.X <- fPosteriorPredictive(10000, 3 + sum(X), 0.5 + length(X))

hist(PPC.X, xlab='X', main='10,000 posterior predictive samples')

Problem 10.1.4. Compare the actual data with your 10,000 posterior predictive samples. Does
your model fit the data?

The most extreme points of the data are the years with 3 and 11 outbreaks respectively. We can
compare our posterior predictive samples with these extrema in R,

mean(PPC.X >= 11)

mean(PPC.X <= 3)

and find that roughly 10% of samples are greater than or equal to 11, and approximately the same
proportion are less than or equal to 3. These Bayesian p values aren’t too close to 0, and so our
data appears to fit the data reasonably well.

Problem 10.1.5. (Optional) Can you think of a better posterior predictive check to carry out on
the data?

A better posterior predictive check would generate 10,000 samples of 5 observations, and count the
number where the minimum point is 3 and the maximum is 11 (or more extreme). To do this I
implemented a new function,

fPosteriorPredictiveGeneral <- function(numObsPerSample, numSamples,

alpha, beta){

X <- matrix(nrow=numSamples, ncol=numObsPerSample)

for(i in 1:numSamples){

aLambda <- rgamma(1, alpha, beta)

X[i, ] <-rpois(numObsPerSample, aLambda)

}

return(X)

}

aNumSamples <- 10000
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PPC.better <- fPosteriorPredictiveGeneral(5, aNumSamples,

3 + sum(X), 0.5 + length(X))

lIndicator <- vector(length=aNumSamples)

for(i in 1:aNumSamples)

lIndicator[i] <- ifelse(min(PPC.better[i, ]) <= 3 &

max(PPC.better[i, ]) >= 11,

1, 0)

mean(lIndicator)

and you should get about 10% here. So it still looks like our model fits the data ok.

Problem 10.1.6. The WHO issues a press release where they state that the number of novel
disease outbreaks for this year was 20. Use your posterior predictive samples to test whether your
model is a good fit to the data.

Since we are just looking at a single data point we can use our simpler posterior predictive function
to generate samples (or just reuse the previously-generated sample),

fPosteriorPredictive <- function(numSamples, alpha, beta){

X <- vector(length=numSamples)

for(i in 1:numSamples){

aLambda <- rgamma(1, alpha, beta)

X[i] <-rpois(1, aLambda)

}

return(X)

}

PPC.X <- fPosteriorPredictive(10000, 3 + sum(X), 0.5 + length(X))

mean(PPC.X >= 20)

where you should obtain a p value of less than 1%, indicating model misfit. This is a test of out-
of-sample predictive capability, and so we would expect this p value to be more extreme than the
within-sample one that we calculate below.

Problem 10.1.7. By using your previously determined posterior as a prior, update your posterior
to reflect the new datum. Graph the PDF for this new distribution.

The new posterior here is a Γ(3 + 35 + 20, 0.5 + 5 + 1) distribution,

curve(dgamma(x, 3 + sum(X) + 20, 0.5 + 5 + 1),

0, 20, xlab='lambda', ylab='pdf')

Problem 10.1.8. Generate posterior predictive samples from your new posterior and use it to
test the validity of your model.

Here I would generate 10,000 samples of 6 observations and count the number of times that you
generate 20 or more cases in a particular year.
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PPC.better <- fPosteriorPredictiveGeneral(6, aNumSamples,

3 + sum(X) + 20,

0.5 + 5 + 1)

lIndicator <- vector(length=aNumSamples)

for(i in 1:aNumSamples)

lIndicator[i] <- ifelse(max(PPC.better[i, ]) >= 20, 1, 0)

mean(lIndicator)

where again the p value is less than 5% and hints at model misfit. This a within-sample measure
of predictive capability of the model.

Problem 10.1.9. Would you feel comfortable using this model to predict the number of disease
outbreaks next year?

No! Even the within-sample prediction is poor. It’s probably that some of these outbreaks are
related to one another – either they are different strains from a common disease, or they are the
result of a common exogenous shock (e.g. civil war).

10.2 Sleep-deprived reactions

These data are from a study described in Belenky et al. (2003) [2] that measured the effect of
sleep deprivation on cognitive performance. Eighteen subjects were chosen from a population of
interest (lorry drivers) who were restricted to 3 hours of sleep during the trial. On each day of
the experiment their reaction time to a visual stimulus was measured. The data for this example
is contained in evaluation_sleepstudy.csv and consists of three variables, Reaction, Days and
Subject ID, which measure the reaction time of a given subject on a particular day.

A simple model that explains the variation in reaction times is a linear regression model of the
form:

R(t) ∼ N (α+ βt, σ) (10.1)

where R(t) is the reaction time on day t of the experiment across all observations.

Problem 10.2.1. By graphing all the data, critically assess the validity of the model to the data.

A simple graph of the time against reaction time is a first starter here. From this it looks like there
may be some heteroscedasticity (higher variance) at later times. This can be done in R using,

library(ggplot2)

df <- read.csv('evaluation_sleepstudy.csv')

ggplot(data=df, aes(x=Days, y=Reaction)) + geom_point() +

geom_smooth(method='lm')
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Problem 10.2.2. Graph the data at the individual subject data using R’s “lattice” package, or
otherwise. What does this suggest about assuming a common β across all participants?

Using a lattice plot (see Figure 10.1),

xyplot(Reaction ~ Days | Subject, df, type=c("g", "p", "r"),

index=function(x, y) coef(lm(y ~ x))[1],

xlab="Days of sleep deprivation",

ylab="Average reaction time (ms)",

aspect="xy")

From an examination of the data at this level it is clear that there is considerable variability in
the performance of the participants. As such, any attempts to lump the data together and apply
a single analysis to it are going to suffer from considerable participant-level biases.
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Figure 10.1: Reaction times versus days of sleep deprivation at the participant level.

Problem 10.2.3. The above model has been fit to the data using MCMC, with 2000 samples from
the posterior distribution for (α, β, σ) contained in the file evaluation_sleepPosteriors.csv.
Generate samples from the posterior predictive distribution, and visualise them in an appropriate
way.

These are shown in Figure 10.2. It is important here to show the time aspect of the data; just
lumping it all together in a histogram misses the point.

Problem 10.2.4. How does the posterior predictive data compare to the actual data?
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Figure 10.2: Posterior predictive distributions (orange) vs data (black).

The key here is to look at the data at the subject level. Averaging over all subjects makes it look
like our model is doing ok, but this masks the (sometimes) very poor performance at the individual
subject level (see Figure 10.3 for one example of this for subject 310).

Problem 10.2.5. How (if at all) do the posterior predictive checks suggest we need to change our
model?

Hierarchical model where we allow there to be inter-subject variability in the effect of sleep depri-
vation on reaction time (β).

10.3 Discoveries data

The file evaluation_discoveries.csv contains data on the numbers of “great” inventions and
scientific discoveries in each year from 1860 to 1959 [1]. The aim of this problem is for you to build
a statistical model that provides a reasonable approximation to this series. As such, you will need
to choose a likelihood, specify a prior on any parameters, and go through and calculate a posterior.
Once you have a posterior, you will want to carry out posterior predictive checks to see that your
model behaves as desired.

Answer: first plot the data! Both a time series and histogram are useful here (see Figure 10.4).
To me the left hand plot suggests that there is some temporal autocorrelation in the data (perhaps
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Figure 10.3: Posterior predictive simulated max (orange) versus the maximum of subject 310
(dashed line).

invalidating an assumption of independence, and/or identical distribution). The histogram would
seem to support this claim, since the variance is fairly obviously greater than the mean. I also plot
an autocorrelogram of the data which suggests that there is autocorrelation in the series.

Now make some assumptions about the occurrence of discoveries; namely that they are independent
and identically-distributed over time. Both of these assumptions may be suspect: independence
may be violated (as I indicate above) if one discovery leads to another; identical distribution may
be invalidated if technological progress leads to an increased rate of discoveries at some points in
time.

However, it is not a bad idea to start with making these assumptions, under the supposition that
they may be suspect. Our aim is to make the simplest model that explains the data, and so we
don’t want to jump straight to a more complex model unless we know for sure that the simple one
fails.

If we do make the above assumptions then a Poisson model is a reasonable starting point. If we use
a Poisson model, then we may as well use the conjugate prior; a gamma distribution. The results
of assuming this framework are shown in Figure 10.5; where we see a tight posterior centred around
a mean of 3 discoveries per year.

Carrying out some PPCs here using the posterior predictive distribution from the Poisson likelihood
model we find that our model is unable to generate the same amount of variation seen in the data
(Figure 10.6). This suggests that one or more of the assumptions on which our data are based are
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Figure 10.4: Characteristics of the “discoveries” data set.
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Figure 10.5: Prior, likelihood and posterior for a Poisson likelihood and Γ(2, 0.15) prior for the
discoveries dataset.

invalid.

There are multiple ways forward from here. To me there are two approaches that “jump out”: a.
use a sampling distribution that allows for non-independent events, but does not explicitly model
the cycles of discovery; b. explicitly model the latent rate of discovery rate. Approach a. would
suggests a negative binomial likelihood, and would certainly allow for the range in the data to
be replicated well. However, I fear that such an approach - by ignoring the fact that the rate of
discoveries changes through time - would fail to capture the intervals of high discovery rate that we
see in the data. In other words those times (for example, between 1880 and 1890) where there is a
persistently high rate of discovery. Approach b. would be more comprehensive and would perhaps
use a negative binomial sampling model for each year, but allow its mean to vary over time. So if
we imagine that the mean of the process at time t is θt, then we might assume:

θt = ρθt−1 + εt (10.2)

So an AR(1) process explicitly. both of these approaches favour a MCMC approach (particularly
the AR(1) process one). As such, I have not tried either these investigations myself, as I wouldn’t
necessarily expect a student to be able to do these at this stage.
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Figure 10.6: The posterior predictive distribution (left) and a posterior predictive comparison of
the actual data with a simulated set (right).

10.4 Marginal likelihood of voting

Suppose that we collect survey data where respondents are asked to indicate for whom they will
vote in an upcoming election. Each poll consists of a sample size of 10 and we collect the following
data for 20 such polls: {2, 7, 4, 5, 4, 5, 6, 4, 4, 4, 5, 6, 5, 7, 6, 2, 4, 6, 6, 6}. We model each outcome as
having been obtained from a Xi ∼ B(10, θ) distribution.

Problem 10.4.1. Find the posterior distribution where we specify θ ∼ beta(a, 1) as a prior. Graph
how the posterior changes as a ∈ [1, 10].

The posterior distribution is given by (because of conjugacy): θ ∼ beta(a+
∑
Xi, 1+

∑
Ni−

∑
Xi).

The graph of the posterior as a function of a is shown in Figure 10.7, where we note the relative
insensitivity to the prior.
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Figure 10.7: The posterior distribution (left) and the marginal likelihood (right) as a function of
prior parameter a. Here the prior specified is θ ∼ beta(a, 1). In the left hand graph the different
lines correspond to different choices of a.
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Problem 10.4.2. Graph the marginal likelihood as a is increased between 1 and 10 (just use
integer values).

See Figure 10.7.

Problem 10.4.3. Calculate the Bayes factor where we compare the model where a = 1 to that
when a = 10? Hence comment on the use of Bayes factors as a method for choosing between
competing models.

This is approximately,

BF =
4.94× 10−17

9.64× 10−19
≈ 51. (10.3)

So we see that there is a strong sensitivity of Bayes factors to choice of priors, even if the posterior
is relatively insensitive.
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