
Chapter 12: Statistics with R - 2nd Edition

Robert Stinerock

Student Exercises

The following exercises are intended to (1) provide practice analyzing data using sim-
ple linear regression and (2) review and reinforce our ability to subset data. The reason
we emphasize these two skills together is that, in many instances, we want to analyze
data that include only certain observations (and variables) while excluding the others. To
this end, we make use of the Cars93 data that is part of the MASS package. And because
regression is the final analytic methodology of the book, we revisit several of the most
useful functions covered earlier in the book, just for practice. The only csv data set used
in these exercises—polling.csv—can be found on the website.

1. Import the Cars93 data into the object named E12 1. What are the variable names?
How many observations are included? Find (1) the minimum and maximum values,
(2) the median and mean, (3) the first and third quartiles, and (4) the standard
deviation of the two variables, MPG.city and EngineSize. Comment.

library(MASS) # Load the MASS package.

E12_1 <- Cars93 # Import Cars93 into the object named E12_1.

nrow(E12_1) # To find number of observations.

## [1] 93

names(E12_1) # To identify the variable names.

## [1] "Manufacturer" "Model" "Type"

## [4] "Min.Price" "Price" "Max.Price"

## [7] "MPG.city" "MPG.highway" "AirBags"

## [10] "DriveTrain" "Cylinders" "EngineSize"

## [13] "Horsepower" "RPM" "Rev.per.mile"

## [16] "Man.trans.avail" "Fuel.tank.capacity" "Passengers"

## [19] "Length" "Wheelbase" "Width"

## [22] "Turn.circle" "Rear.seat.room" "Luggage.room"

## [25] "Weight" "Origin" "Make"
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# Use the summary() function to find the basic descriptive

# statistics for MPG.city and EngineSize.

summary(E12_1$MPG.city)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 15.00 18.00 21.00 22.37 25.00 46.00

summary(E12_1$EngineSize)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.000 1.800 2.400 2.668 3.300 5.700

# Use the sd() function to find the standard deviation

# of each variable.

sd(E12_1$MPG.city)

## [1] 5.619812

sd(E12_1$EngineSize)

## [1] 1.037363

Answer: The Cars93 data include 93 observations across 27 variables. The descrip-
tive statistics for MPG.city and EngineSize are provided above.

2. Do MPG.city and EngineSize appear related in any systematic way? Comment.

plot(E12_1$EngineSize, E12_1$MPG.city,

pch = 19,

xlab = 'Engine Size (liters)',

ylab = 'City Miles per Gallon',

main = 'Relationship Between City MPG and Engine Size (liters)')
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Answer: The pattern of points revealed by the scatterplot suggests that the rela-
tionship is negatively related. One important question is whether the relationship
is linear; the scatterplot suggests that it is probably more curvilinear than linear.
To sort out this issue, we need to consider the residual plot.

3. Make and inspect a residual plot. Does the pattern of points reveal anything that
might cause us to question the assumptions underlying the appropriate usage of
regression analysis to explore the relationship between MPG.city and EngineSize?

# Use the lm() function to create the model object;

# name it slr1 (the first simple linear regression).

slr1 <- lm(MPG.city ~ EngineSize, data = E12_1)

# Use the plot() function to create a residual plot.

# Note that resid(slr1) must be included as an argument.

3



plot(E12_1$EngineSize,

resid(slr1),

abline(h = 0),

pch = 19,

xlab = 'Engine Size (liters)',

ylab = 'Residuals',

main = 'Residuals Against the Independent Variable')
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Answer: When the engine size is between (roughly) 1.5 and 3.5 liters, the residuals
reveal a reasonably linear relationship between MPG.city and EngineSize. How-
ever, this pattern tends to break down for both the upper and lower values of engine
size: for vehicles having the smallest engine size (below 1.5 liters) and the largest
engine size (above 3.5 liters) the pattern of the residuals tells us that the assump-
tions underlying the correct application of regression are not very well met.

4. There are several possible methods for managing the problem of nonlinear relation-
ships among variables, such as what we have encountered in this case. One of the
approaches involves transforming the variables—by way of logarithms, exponents,
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etc.—in such a way that they are forced to be more linearly related. (This class of
methods, sometimes referred to as GLM or general linear model, is not covered in
this book.) Another procedure requires including additional variables into the mul-
tiple regression model (the focus of Chapter 13). Instead, the approach we employ
here involves subsetting the data according to some specification—such as, subset-
ting the data in a way that includes, for example, only vehicles manufactured in
the US or all vehicles that have smaller engines (i.e., fewer liters of displacement).
The expectation (or hope) is that, by subsetting, the resulting data may meet the
assumptions behind the appropriate application of regression analysis. As a first
step, subset the data stored in object E12 1 in a way that excludes all vehicles with
EngineSize greater than the median. Name this new object E12 2. Check to make
sure that E12 2 conforms to this requirement. How many observations remain in
the new object? List the first three observations; list the last three observations.

# Use indexing [ , ]; set median Engine Size value of 2.4.

E12_2 <- E12_1[E12_1$EngineSize <= 2.40, c('MPG.city', 'EngineSize')]

# Use the max() and min() functions to find the maximum

# and minimum values of EngineSize in E12_2.

max(E12_2$EngineSize)

## [1] 2.4

min(E12_2$EngineSize)

## [1] 1

# List the first three and last three observations.

head(E12_2, 3)

## MPG.city EngineSize

## 1 25 1.8

## 6 22 2.2

## 12 25 2.2

tail(E12_2, 3)

## MPG.city EngineSize

## 90 21 2.0

## 92 21 2.3

## 93 20 2.4

# Use nrow() function to find the number of observations.

nrow(E12_2)

## [1] 49
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Answer: The variable EngineSize now runs from a low of 1 to a high of 2.4 liters;
E12 2 now includes n = 49 observations.

5. For E12 2, do MPG.city and EngineSize appear related in a systematic way?

plot(E12_2$EngineSize, E12_2$MPG.city,

pch = 19,

xlab = 'Engine Size (liters)',

ylab = 'City Miles per Gallon',

main = 'Relationship Between City MPG and Engine Size (liters)')
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Answer: Yes, the pattern of points revealed in the scatterplot of the E12 2 data
suggests that the two variables, MPG.city and EngineSize, may be negatively and
linearly related. This is not a surprising finding, of course, since it confirms what
we believe about this relationship in the first place.

6. Make and inspect a residual plot. Does the pattern of points appear more linearly
related than they did before we subset the origin data?
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# Use the lm() function to create the model object named

# slr2 (the second simple linear regression).

slr2 <- lm(MPG.city ~ EngineSize, data = E12_2)

# Use the plot() function to create a residual plot.

# Note that resid(slr2) must be included as an argument.

plot(E12_2$EngineSize,

resid(slr2),

abline(h = 0),

pch = 19,

xlab = 'Engine Size (liters)',

ylab = 'Residuals',

main = 'Residuals Against the Independent Variable')
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Answer: Yes, apart from three or four outliers for values of engine size below 1.5
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liters, the residual plot does not reveal serious violations of the assumptions.

7. As part of making the residual plot in the preceding exercise, we used the lm()

function to create the model object slr2. This is an important step in residual
analysis because the model object (slr2) includes all the important information
associated with the particular regression problem at hand, including the estimated
regression equation itself. What is the estimated regression equation?

slr2

##

## Call:

## lm(formula = MPG.city ~ EngineSize, data = E12_2)

##

## Coefficients:

## (Intercept) EngineSize

## 46.15 -10.87

Answer: The estimated regression equation is ŷ = b0 + b1x = 46.15− 10.87x, where
ŷ is the predicted dependent variable, MPG.city, and x is the independent variable,
EngineSize.

8. Find the 95 and 99 percent confidence interval estimates of the regression coefficient
b1. Describe what these confidence intervals mean.

# Use the confint( , level = ) function to find the

# confidence interval estimates of the regression coefficient.

confint(slr2, level = 0.95)

## 2.5 % 97.5 %

## (Intercept) 40.09671 52.207573

## EngineSize -14.03045 -7.714777

confint(slr2, level = 0.99)

## 0.5 % 99.5 %

## (Intercept) 38.07151 54.232777

## EngineSize -15.08657 -6.658656

Answer: There is a 95% probability that the regression coefficient falls in the interval
from -14.03045 to -7.714777; there is a 99% probability that it falls in the interval
from -15.08657 to -6.658656.

9. What does the estimated regression equation tell us?
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Answer: We can interpret the estimated regression equation ŷ = 46.15−10.87x this
way: for the class of vehicles with engine sizes of 2.4 liters or less, we expect that
a change of 1 liter in engine size will be associated with a change of 10.87 miles
per gallon when the vehicle is driving in a city. Moreover, the negative sign tells
us that MPG.city and EngineSize are inversely related: as EngineSize increases
(decreases), MPG.city decreases (increases). We know this because the regression
coefficient b1 = −10.87. The intercept term b0 = 46.15 means less to us, except
when we make predictions, because it implies that a vehicle with 0 liters of displace-
ment should get 46.15 miles per gallon in city driving.

10. What is the strength of association between the two variables, MPG.city and Engine

Size? Find the coefficient of determination r2 using the following expression for r2

(do not use the summary() function to unpack the regression statistics; we will use
it later). This exercise provides another opportunity to hone your coding skills.

r2 =

∑
(yi − y)2 −

∑
(yi − ŷi)2∑

(yi − y)2
=
SSy − SSres

SSy

# Find the total sum of squares, ss_y.

ss_y <- sum((E12_2$MPG.city - mean(E12_2$MPG.city)) ^ 2)

# Find the residual sum of squares, ss_res.

ss_res <- sum((resid(slr2)) ^ 2)

# Find the coefficient of determination.

(ss_y - ss_res) / ss_y

## [1] 0.505143

Answer: The coefficient of determination, r2 = 0.505143.

11. What does the coefficient of determination r2 reveal about the regression model?

Answer: The r2 indicates the proportion of variation in the dependent variable
MPG.city that is explained (or accounted for) by variation in the independent vari-
able EngineSize. In this case, that proportion is 0.505143, or roughly 51%. More-
over, because r2 = 0.505143, we also know that almost 49% of the variation in
MPG.city remains unaccounted for, even once the association with EngineSize has
been considered.
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12. What is the t value of the coefficient b1 on the independent variable EngineSize?
Do not use the summary() function but rather write out the code.

Answer: t = −6.926538

Because finding the answer to this question requires a slightly more complicated bit
of code, we break up the solution into several pieces.

(a) The expression for the t value is found by taking the ratio of the coefficient
itself to the standard error.

t =
b1
sb1

(b) Finding the denominator (i.e., the standard error sb1) of the above expression
requires calculating another ratio

sb1 =
sy|x√∑
(xi − x)2

=
4.061098

2.587174
= 1.569704

where the numerator of this ratio sy|x is

sy|x =

√∑
(yi − ŷi)2
n− 2

= 4.061098

s_xy <- sqrt(sum((resid(slr2) ^ 2)) / (nrow(E12_2) - 2))

s_xy

## [1] 4.061098

and where the denominator of this ratio is

√∑
(xi − x)2 = 2.587174

ssx <- sqrt(sum((E12_2$EngineSize - mean(E12_2$EngineSize)) ^ 2))

ssx

## [1] 2.587174

The ratio can now be found by dividing the first value (above) by the second.
This value is sb1 .
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sb1 <- s_xy / ssx

sb1

## [1] 1.569704

(c) The numerator of the t statistic requires the regression coefficient b1

b1 =

∑
(xi − x)(yi − y)∑

(xi − x)2
= −10.87261

b1 <- sum((E12_2$EngineSize - mean(E12_2$EngineSize)) *

(E12_2$MPG.city - mean(E12_2$MPG.city))) /

sum((E12_2$EngineSize - mean(E12_2$EngineSize)) ^ 2)

b1

## [1] -10.87261

(d) Finally, the t statistic is found by dividing the regression coefficient b1 by the
standard error sb1 .

t =
b1
sb1

=
−10.87261

1.569704
= −6.926538

t = b1 / sb1

t

## [1] -6.926538

13. What is the p-value of t = −6.926538?

Answer: the p-value=(2)(p(t ≤ t = −6.926538, df = 47)) = 0.00000001056443.

Note: For convenience and accuracy, we use t from the preceding exercise as the
first argument of the pt() function.

# Since the p-value statistic has a very small value, we can

# override the default of reporting it in scientific notation.

options(scipen = 999)
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# Use the pt() function with (n-2)=47 degrees of freedom.

# Remember that since this is a two-tail test, we need to multiply

# by 2.

2 * pt(t, 47)

## [1] 0.00000001056443

14. Use the summary() extractor function to check our work. Remember to use the
model object slr2 as the argument.

#Comment Use summary() function to extract the desired statistics.

summary(slr2)

##

## Call:

## lm(formula = MPG.city ~ EngineSize, data = E12_2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -15.0177 -1.5814 -0.1451 1.7676 12.1568

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 46.15 3.01 15.333 < 0.0000000000000002 ***

## EngineSize -10.87 1.57 -6.927 0.0000000106 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.061 on 47 degrees of freedom

## Multiple R-squared: 0.5051,Adjusted R-squared: 0.4946

## F-statistic: 47.98 on 1 and 47 DF, p-value: 0.00000001056

All the findings arrived at using the summary() function confirm what has been
found in the preceding exercises. That is, the estimated regression equation is
ŷ = 46.15− 10.87x; the coefficient of determination is r2 = 0.505143; the t statistic
is t = −6.926538; and the p-value=0.00000001056443.

15. Use the regression equation to find the predicted values of MPG.city for the follow-
ing values of EngineSize (liters of displacement): 1.25, 1.50, 1.75, 2.00, 2.25.

Answer: The predicted values of MPG.city for EngineSize of 1.25, 1.50, 1.75, 2.00,
and 2.25 liters are (in order) 32.56138, 29.84322, 27.12507, 24.40692, and 21.68876
miles per gallon.
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# Use data.frame() to create a new object containing 1.25,

# 1.50, 1.75, 2.00, and 2.25. Name the new object size_new.

size_new <- data.frame(EngineSize <- c(1.25, 1.50, 1.75, 2.00, 2.25))

# Use the predict() function to provide predicted values

# of miles per gallon for vehicles having 1.25, 1.50, 1.75, 2.00, and

# 2.25 liters EngineSize.

predict(slr2, size_new)

## 1 2 3 4 5

## 32.56138 29.84322 27.12507 24.40692 21.68876

16. What are the predicted values of MPG.city that were used to calibrate the estimated
regression equation ŷ = 46.15−10.87x? Import those predicted values into an object
named mileage predicted and list the first and last three elements.

# Use the fitted(slr2) function to create the predicted

# values of the dependent variable. Import those values into

# the object named mileage_predicted.

mileage_predicted <- fitted(slr2)

# Use the head(,3) and tail(,3) functions to list the

# first and final three values of the predicted value.

head(mileage_predicted, 3)

## 1 6 12

## 26.58144 22.23239 22.23239

tail(mileage_predicted, 3)

## 90 92 93

## 24.40692 21.14513 20.05787

17. Add the mileage predicted object (created in the preceding exercise) to E12 2,
and name the resulting object E12 3. List the first and last four elements. Find the
correlation of the actual and predicted variables; that is, the correlation of MPG.city
and mileage predicted. Once you have calculated the correlation, square it (i.e.,
raise it to the second power). Does the squared correlation coefficient look familiar?
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# Use the cbind() function to bind the column

# mileage_predicted #to E12_2. Name the new object E12_3.

E12_3 <- cbind(E12_2, mileage_predicted)

# List the first and last four elements of E12_3.

head(E12_3, 4)

## MPG.city EngineSize mileage_predicted

## 1 25 1.8 26.58144

## 6 22 2.2 22.23239

## 12 25 2.2 22.23239

## 13 25 2.2 22.23239

tail(E12_3, 4)

## MPG.city EngineSize mileage_predicted

## 88 25 1.8 26.58144

## 90 21 2.0 24.40692

## 92 21 2.3 21.14513

## 93 20 2.4 20.05787

# Find the correlation of the actual and predicted

# dependent variables. Store the value in an object named r.

r <- cor(E12_3$MPG.city, E12_3$mileage_predicted)

r

## [1] 0.7107341

# Square the value of r.

r^2

## [1] 0.505143

The square of the correlation of the actual dependent variable and predicted depen-
dent variable equals the coefficient of determination, r2.

18. Create a scatterplot with MPG.city on the vertical axis, Engine Size on the hor-
izontal axis. Add labels to both axes as well as a main title. Finally, using the
abline() function, add a regression line to the scatterplot.
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plot(E12_2$EngineSize, E12_2$MPG.city,

xlab = 'Engine Size (liters)',

ylab = 'City Miles per Gallon',

main = 'The Best Line Through the Scatterplot',

pch = 19,

col = 'blue')

abline(slr2)
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19. For additional practice structuring our data before analyzing it, we now subset E12 1

by Origin. For this exercise: (1) create a new object from the original data set,
E12 1, that includes only vehicles of non-USA origin (thus excluding all vehicles
of USA origin) and name it E12 4; (2) find the median EngineSize of non-USA
vehicles, and (3) create a new object, named E12 5, that includes only (a) those
vehicles having MPG.city less than or equal to the median and only (b) the two
variables, MPG.city and EngineSize. In other words, subset the original data set,
E12 1, to include only the two variables, MPG.city and EngineSize, and only those
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vehicles that are of non-USA origin and that feature engines with displacement (in
liters) at or below the median for the relevant category. Just to make sure E12 5

“looks” as it should, run a few of the same functions that were used in Exercise 1.

# Subset data so that it includes only vehicles of non-USA

# origin. Name new object E12_4.

E12_4 <- E12_1[ which(E12_1$Origin == 'non-USA'), ]

# Find the median EngineSize for the sample including only

# non-USA vehicles.

median(E12_4$EngineSize)

## [1] 2.2

# Since the median is 2.2 liters, subset the data once

# again to include only vehicles with 2.2 liters (or less) engine

# displacement. Name the new object E12_5.

E12_5 <- E12_4[E12_4$EngineSize <= 2.20, c('MPG.city', 'EngineSize')]

# Use the summary() function to find the basic descriptive

# statistics for MPG.city and EngineSize

summary(E12_5$MPG.city)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 17.00 22.75 25.50 27.54 29.25 46.00

summary(E12_5$EngineSize)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1.000 1.500 1.700 1.708 2.000 2.200

# Use nrow() function to find the number of observations.

nrow(E12_5)

## [1] 24

# Use the names() function to confirm that E12_5 includes

#only two variables, MPG.city and EngineSize.

names(E12_5)
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## [1] "MPG.city" "EngineSize"

# Finally, print out the entire new (twice subsetted) data set.

E12_5

## MPG.city EngineSize

## 1 25 1.8

## 39 46 1.0

## 40 30 1.6

## 42 42 1.5

## 43 24 2.2

## 44 29 1.5

## 45 22 1.8

## 46 26 1.5

## 47 20 2.0

## 53 29 1.6

## 54 28 1.8

## 57 17 1.3

## 62 29 1.5

## 64 29 1.6

## 78 20 2.1

## 80 33 1.2

## 81 25 1.8

## 82 23 2.2

## 83 39 1.3

## 84 32 1.5

## 85 25 2.2

## 86 22 2.2

## 88 25 1.8

## 90 21 2.0

Answer: The new data set, E12 5, includes 24 observations across the two vari-
ables, MPG.city and EngineSize. The descriptive statistics for both variables are
reported above. Note that the maximum value of EngineSize is 2.2, thus confirm-
ing that the data include only what we want, in terms of observations, variables,
and restrictions. This practice of “looking under the hood (or bonnet)” is a sound
one. It allows us to confirm that the data really do look like they should.

20. For the category of vehicles of non-USA origin, do the two variables, MPG.city and
EngineSize, seem to be related in a systematic way? If so, how?

plot(E12_5$EngineSize, E12_5$MPG.city,

pch = 19,

xlab = 'Engine Size (liters)',

ylab = 'City Miles per Gallon',

main = 'Relationship Between City MPG and Engine Size (liters)')
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Answer: Yes, the pattern of points appears to run (approximately) from the upper-
lefthand to lower-righthand corners of the scatterplot, implying a negative associa-
tion: larger engine sizes are associated with lower miles per gallon (in city driving).
But because of a few outlier cases, we do not expect the r2 to be very high, perhaps
not even r2 = 0.50.

21. Make and inspect a residual plot. Does the pattern of points reveal any reason why
we should not use regression to analyze these data? Are there any radical departures
from the assumptions underlying the appropriate usage of this methodology?

# Use the lm() function to create the model object named

# slr3 (slr3 stands for the third simple linear regression).

slr3 <- lm(MPG.city ~ EngineSize, data = E12_5)

# Use the plot() function to create a residual plot.

# Note that resid(slr3) must be included as an argument.
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plot(E12_5$EngineSize,

resid(slr3),

abline(h = 0),

pch = 19,

xlab = 'Engine Size (liters)',

ylab = 'Residuals',

main = 'Residuals Against the Independent Variable')
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Answer: The only possible area of trouble revealed by the residual plot might be
in the range of the smaller engines, particulary at and below 1.5 liters. For vehicles
with larger engines, however, the assumption of constant variation seems satisfied.
Therefore, although the data are far from what we might characterize as “well be-
haved,” the violations do not seem serious enough to cause us to drop regression as
a potentially promising analytic methodology.

22. What is the estimated regression equation?
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slr3

##

## Call:

## lm(formula = MPG.city ~ EngineSize, data = E12_5)

##

## Coefficients:

## (Intercept) EngineSize

## 51.27 -13.89

Answer: The estimated regression equation is ŷ = 51.27−13.89x. The predicted de-
pendent variable is ŷ, MPG.city; the independent variable is x, or EngineSize. Note
that to recover this minimal information, we need only enter the model object, slr3.

23. Find the 75 and 90 percent confidence interval estimates of the regression coefficient
b1. How should we interpret the meaning of these confidence interval estimates?

confint(slr3, level = 0.75)

## 12.5 % 87.5 %

## (Intercept) 44.60803 57.94082

## EngineSize -17.72209 -10.06260

confint(slr3, level = 0.90)

## 5 % 95 %

## (Intercept) 41.58615 60.962698

## EngineSize -19.45811 -8.326578

Answer: There is a 75% probability that the regression coefficient falls in the in-
terval from -17.72209 to -10.06260; there is a 90% probability that it falls in the
interval from -19.45811 to -8.326578.

24. What does the estimated regression equation tell us?

Answer: The estimated regression equation ŷ = 51.27 − 13.89x can be interpreted
in this manner: for the category of vehicles of non-USA origin—and with engine
sizes of 2.2 or fewer liters—we can expect that a change of 1 liter in engine size
will be associated with a change of 13.89 miles per gallon when the vehicle is driv-
ing in a city. The negative sign, b1 = −13.89, also tells us that as EngineSize

increases (decreases), MPG.city decreases (increases). Although the intercept term,
b0 = 51.27, is not meaningfully interpretable, we will find it necessary to include it
in the regression equation whenever we want to forecast or make predictions.
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25. What is the strength of association between the two variables, MPG.city and Engine

Size? Find the coefficient of determination r2 using the following expression for r2

(do not use the summary() function to unpack the regression statistics; we will use
it later). This exercise provides another opportunity to hone your coding skills.

r2 =

∑
(yi − y)2 −

∑
(yi − ŷi)2∑

(yi − y)2
=
SSy − SSres

SSy

# Find the total sum of squares, ss_y.

ss_y <- sum((E12_5$MPG.city - mean(E12_5$MPG.city)) ^ 2)

# Find the residual sum of squares, ss_res.

ss_res <- sum((resid(slr3)) ^ 2)

# Find the coefficient of determination.

(ss_y - ss_res) / ss_y

## [1] 0.455044

Answer: The coefficient of determination, r2 = 0.455044.

26. What does the coefficient of determination r2 tell us about the regression model?

Answer: The r2 is the proportion of variation in the dependent variable MPG.city

that is accounted for (or explained) by variation in EngineSize, the independent
variable. When r2 = 0.455044, we understand that that proportion is about 45%.
We also know that approximately 55% of variation in MPG.city remains unex-
plained, even after taking EngineSize into account.

27. What is the t value of the coefficient b1 on the independent variable EngineSize?
Do not use the summary() function but rather write out the code (more practice).

Answer: t = −4.286

Because finding the answer to this question requires a slightly more complicated bit
of code, we break up the solution into several pieces.

(a) The expression for the t value is found by taking the ratio of the coefficient
itself to the standard error.

21



t =
b1
sb1

(b) Finding the denominator (i.e., the standard error sb1) of the above expression
requires calculating another ratio

sb1 =
sy|x√∑
(xi − x)2

=
5.304575

1.636561
= 3.241293

where the numerator of this ratio sy|x is

sy|x =

√∑
(yi − ŷi)2
n− 2

= 5.304575

s_xy <- sqrt(sum((resid(slr3) ^ 2)) / (nrow(E12_5) - 2))

s_xy

## [1] 5.304575

and where the denominator of this ratio is

√∑
(xi − x)2 = 1.636561

ssx <- sqrt(sum((E12_5$EngineSize - mean(E12_5$EngineSize)) ^ 2))

ssx

## [1] 1.636561

The ratio can now be found by dividing the first value (above) by the second.
This is the value for sb1

sb1 <- s_xy / ssx

sb1

## [1] 3.241293

(c) The numerator of the t statistic requires the regression coefficient b1

b1 =

∑
(xi − x)(yi − y)∑

(xi − x)2
= −13.89235
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b1 <- sum((E12_5$EngineSize - mean(E12_5$EngineSize)) *

(E12_5$MPG.city - mean(E12_5$MPG.city))) /

sum((E12_5$EngineSize - mean(E12_5$EngineSize)) ^ 2)

b1

## [1] -13.89235

(d) Finally, the t statistic is found by dividing the regression coefficient b1 by the
standard error sb1 .

t =
b1
sb1

=
−13.89235

3.241293
= −4.286051

t = b1 / sb1

t

## [1] -4.286051

28. What is the p-value of t = −4.286051?

Answer: p-value= (2)(p(t ≤ t = −4.286051, df = 22)) = 0.0003000032.

Note: For convenience and accuracy, we use the t from the preceding exercise as the
first argument of the pt() function.

# Use the pt() function with (n-2)=22 degrees of freedom.

# Remember that since this is a two-tail, we need to multiply by 2.

2 * pt(t, 22)

## [1] 0.0003000032

29. Use the summary() extractor function to check our work. Remember to use the
model object slr3 as the argument.

summary(slr3)

##

## Call:

## lm(formula = MPG.city ~ EngineSize, data = E12_5)

##
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## Residuals:

## Min 1Q Median 3Q Max

## -16.2144 -1.7278 -0.6574 1.8710 11.5641

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 51.274 5.642 9.088 0.00000000668 ***

## EngineSize -13.892 3.241 -4.286 0.0003 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.305 on 22 degrees of freedom

## Multiple R-squared: 0.455,Adjusted R-squared: 0.4303

## F-statistic: 18.37 on 1 and 22 DF, p-value: 0.0003

All findings arrived at using the summary() function confirm what has been found in
the preceding exercises. The estimated regression equation is ŷ = 51.274− 13.892x;
the coefficient of variation is r2 = 0.455; the t statistic is t = −4.286051; and the
p-value=0.0003000032.

30. Use the estimated regression equation to find the predicted values of MPG.city for
the following values of EngineSize (liters of displacement): 1.25, 1.50, 1.75, 2.00,
2.25.

Answer: The predicted values of MPG.city for EngineSize of 1.25, 1.50, 1.75, 2.00,
and 2.25 liters are (in order) 33.90899, 30.43591, 26.96282, 23.48973, and 20.01665
miles per gallon.

# Use data.frame() to create a new object containing 1.25,

# 1.50, 1.75, 2.00, and 2.25. Name the new object size_new.

size_new <- data.frame(EngineSize <- c(1.25, 1.50, 1.75, 2.00, 2.25))

# Use predict() function to provide the predicted values

# of miles per gallon for vehicles having 1.25, 1.50, 1.75, 2.00, and

# 2.25 liters EngineSize.

predict(slr3, size_new)

## 1 2 3 4 5

## 33.90899 30.43591 26.96282 23.48973 20.01665

31. What are the predicted values of MPG.city that were used to calibrate the estimated
regression equation ŷ = 51.274 − 13.892x? Import those predicted values into an
object named mileage predicted and list the first and last three elements.
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# Use fitted(slr3) function to create the predicted

# values of the dependent variable. Import those values into

# the object named mileage_predicted.

mileage_predicted <- fitted(slr3)

# Use the head(,3) and tail(,3) functions to list the

# first and final three values of the predicted value.

head(mileage_predicted, 3)

## 1 39 40

## 26.26820 37.38208 29.04667

tail(mileage_predicted, 3)

## 86 88 90

## 20.71126 26.26820 23.48973

32. Merge the mileage predicted object (created in the preceding exercise) with E12 5,
and name the resulting object E12 6. List the first and last four elements. Find the
correlation of the actual and predicted variables; that is, the correlation of MPG.city
and mileage predicted. Once you have the correlation, square it (i.e., raise it to
the second power). Comment on the square of the correlation. What is it?

# Use the cbind() function to bind the column

# mileage_predicted #to E12_5. Name the new object E12_6.

E12_6 <- cbind(E12_5, mileage_predicted)

# List the first and last four elements of E12_6.

head(E12_6, 4)

## MPG.city EngineSize mileage_predicted

## 1 25 1.8 26.26820

## 39 46 1.0 37.38208

## 40 30 1.6 29.04667

## 42 42 1.5 30.43591

tail(E12_6, 4)

## MPG.city EngineSize mileage_predicted

## 85 25 2.2 20.71126
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## 86 22 2.2 20.71126

## 88 25 1.8 26.26820

## 90 21 2.0 23.48973

# Find the correlation of the actual and predicted

# dependent variables. Store the value in an object named r.

r <- cor(E12_6$MPG.city, E12_6$mileage_predicted)

r

## [1] 0.6745695

# Square the value of r.

r^2

## [1] 0.455044

The square of the correlation of the actual dependent variable and predicted depen-
dent variable equals the coefficient of determination, r2.

33. Create a scatterplot with MPG.city on the vertical axis, Engine Size on the hor-
izontal axis. Add labels to both axes as well as a main title; set blue as the color
of the points. Finally, using the abline() function, add a regression line to the
scatterplot.

plot(E12_6$EngineSize, E12_6$MPG.city,

xlab = 'Engine Size (liters)',

ylab = 'City Miles per Gallon',

main = 'The Best Line Through the Scatterplot',

pch = 19,

col = 'blue')

abline(slr3)
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34. This exercise provides further opportunity to find data from an online source, create
a data frame from scratch, and analyze it using some of the methods associated with
simple linear regression. In this instance, we look up and record the high and low
intra-day temperatures (in either degrees Celsius or Fahrenheit) for the following 14
cities from around the world: Auckland, Beijing, Cairo, Lagos, London, Mexico City,
Mumbai, Paris, Rio de Janeiro, Sydney, Tokyo, Toronto, Vancouver, and Zurich.

(a) Use the c() function to create three objects, one for each city name, one for
the high temperature, and one for the low temperature. The data are recorded
for a recent December day.

city <- c('Auckland', 'Beijing', 'Cairo', 'Lagos', 'London',

'Mexico City', 'Mumbai', 'Paris', 'Rio de Janeiro',

'Sydney', 'Tokyo', 'Toronto', 'Vancouver', 'Zurich')

high <- c(71, 45, 65, 91, 46, 67, 88, 44, 92, 88, 57, 20, 42, 40)
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low <- c(56, 23, 48, 76, 37, 45, 71, 35, 73, 65, 39, 15, 39, 29)

(b) Use the data.frame() function to create a data frame consisting of each city
name and high and low temperatures. Display the results to check your work.

WorldTemps <- data.frame(City = city, High = high, Low = low)

WorldTemps

## City High Low

## 1 Auckland 71 56

## 2 Beijing 45 23

## 3 Cairo 65 48

## 4 Lagos 91 76

## 5 London 46 37

## 6 Mexico City 67 45

## 7 Mumbai 88 71

## 8 Paris 44 35

## 9 Rio de Janeiro 92 73

## 10 Sydney 88 65

## 11 Tokyo 57 39

## 12 Toronto 20 15

## 13 Vancouver 42 39

## 14 Zurich 40 29

(c) Make a scatterplot of high against low temperatures. Create a main title, label
each axis appropriately, and use pch= to specify how the points should appear.
Does the pattern of points appear to confirm that the relationship between
high and low temperatures is linear?

plot(WorldTemps$Low, WorldTemps$High,

pch = 19,

col = 'green',

xlab = "Low",

ylab = "High",

main = "High and Low Intraday Temperatures")
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Answer: The scatterplot makes clear that the relationship between high and
low intra-day temperatures is both positive and linear.

(d) Estimate and write out the regression equation ŷ = b0 + b1x. Let the high
temperature be the dependent variable, and the low temp, the independent
variable.

reg_eq_temps <- lm(High ~ Low, data = WorldTemps)

reg_eq_temps

##

## Call:

## lm(formula = High ~ Low, data = WorldTemps)

##

## Coefficients:

## (Intercept) Low

## 7.763 1.148

The estimated regression equation is: ŷ = 7.763 + 1.148x
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(e) What is the r2?

summary(reg_eq_temps)

##

## Call:

## lm(formula = High ~ Low, data = WorldTemps)

##

## Residuals:

## Min 1Q Median 3Q Max

## -10.533 -3.991 -1.051 3.884 10.834

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.76313 4.27689 1.815 0.0946 .

## Low 1.14795 0.08546 13.433 0.0000000136 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 5.918 on 12 degrees of freedom

## Multiple R-squared: 0.9376,Adjusted R-squared: 0.9325

## F-statistic: 180.5 on 1 and 12 DF, p-value: 0.00000001363

The r2 is 0.9376, indicating that approximately 93.76% of variation in the de-
pendent variable is explained by variation in the independent variable.

(f) What is the p-value? Is the estimate regression equation significant? Why or
why not?

Since p-value=0.0000000136 is far less than the usual values we set for α—e.g.,
0.05, 0.01, etc.—we say that the estimated regression equation is significant.

35. A dependent variable y is regressed on an independent variable x; the sample size
is n = 32.

(a) If SSreg = 808.89 and SSres = 317.16, what is the r2? Answer: 0.7183.

SSy = SSreg + SSres = 808.89 + 317.16 = 1126.05

r2 =
SSreg

SSy

=
808.89

1126.05
= 0.7183

(b) If b1 = −0.041215 and sb1 = 0.004712, what is the value of the test statistic t?

t =
b1
sb1

=
−0.041215

0.004712
= −8.75
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(c) What is the p-value?

= 2(p(t < −8.75, df = n−k− 1)) = 2(p(t < −8.75, df = 30)) = 0.00000000093

2 * pt(-8.75, 30)

## [1] 0.0000000009313949

(d) Is the estimated regression equation significant at the α = 0.01 level?

Yes, since p-value = 0.00000000093 <α = 0.01, we conclude that the estimated
regression equation is significant.

(e) If b0 = 29.599855, write out the regression equation, ŷ = b0 + b1x.

ŷ = 29.599855− 0.041215x

36. This exercise uses the mtcars data set that is part of the basic R installation.
(Remember that to see all the installed data sets, simply enter data() at the prompt
in the Console; to view the mtcars data set itself, enter mtcars at the prompt;
to learn more about the data set, including the variables and observations, enter
?mtcars at the prompt and wait for the help page to open.) In this case, we
are interested in the relationship between an automobile’s quarter mile time and
gross horsepower.

(a) Create a scatterplot of the two variables. What does the pattern of points
suggest about the relationship (if any) between the variables? Are there any
outliers?

Answer: The scatterplot makes clear that the relationship between gross horse
power and quarter mile time (seconds) is both negative and (approximately)
linear. There appears to be an outlier in the upper lefthand area of the plot.

plot(mtcars$hp, mtcars$qsec,

pch = 19,

col = 'purple',

xlab = "Gross Horse Power",

ylab = "Quarter Mile Time (seconds)")
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(b) Letting the quarter mile time be the dependent variable, estimate the re-
gression equation. Write out the regression equation ŷ = b0 + b1x.

reg_eq_mtcars <- lm(qsec ~ hp, data = mtcars)

reg_eq_mtcars

##

## Call:

## lm(formula = qsec ~ hp, data = mtcars)

##

## Coefficients:

## (Intercept) hp

## 20.55635 -0.01846

The estimated regression equation is: ŷ = 20.55635− 0.01846x.

(c) What is the r2?
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summary(reg_eq_mtcars)

##

## Call:

## lm(formula = qsec ~ hp, data = mtcars)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.1766 -0.6975 0.0348 0.6520 4.0972

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 20.556354 0.542424 37.897 < 0.0000000000000002 ***

## hp -0.018458 0.003359 -5.495 0.00000577 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.282 on 30 degrees of freedom

## Multiple R-squared: 0.5016,Adjusted R-squared: 0.485

## F-statistic: 30.19 on 1 and 30 DF, p-value: 0.000005766

The r2 is 0.5016, indicating that approximately 50.16% of variation in the de-
pendent variable is explained by variation in the independent variable.

(d) What is the p-value?

Answer: p-value=0.000005766

(e) Is the estimated regression equation significant at the α = 0.05 level?

Since p-value=0.000005766 is less than the usual values for α (such as α = 0.10,
0.05, or 0.01), we say that the estimated regression equation is significant.

37. Use the mtcars data to answer the following questions.

(a) Find the predicted quarter mile time for all the values of gross horsepower

from the data set used in the original analysis. Report the predicted values for
the last four observations.

tail(fitted(reg_eq_mtcars) , 4)

## Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E

## 15.68336 17.32615 14.37282 18.54440

(b) Find the predicted values of quarter mile time for the following values of
gross horsepower: 100, 125, 160, 225, and 250.
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new_values <- data.frame(hp <- c(100, 125, 160, 225, 250))

predict(reg_eq_mtcars, new_values)

## 1 2 3 4 5

## 18.71052 18.24906 17.60302 16.40323 15.94178

(c) Can we use the estimated regression equation to make predictions of quarter
mile time when gross horsepower is 40 or 350? Why or why not?

Answer: The minimum and maximum values of hp are 52 and 335, respectively.
Accordingly, we should be very careful about using the estimated regression
equation to make predictions based on values that are either above 335 (as is
350) or below 52 (as is 40).

min(mtcars$hp)

## [1] 52

max(mtcars$hp)

## [1] 335

38. This exercise explores the relationship (if any) between two of the five variables of
the polling.csv data: x1 =age, measured in years, and x3 =same sex, which is
measured on a 1-to-7 Likert scale as a response to the statement, “I approve of the
right of same-sex couples to marry.” A respondent registers strong disapproval with
a 1, strong approval with a 7, and relative indifference with a response in the middle
of the range from 1-to-7. The polling.csv data can be found on the website.

(a) Make a scatterplot of x3 against x1. Do you see any possible violations of
the assumptions underlying the correct application of simple linear regression
to these data? What does the nature of the pattern tell you? Do you think
regression can be used to explore the relationship between the two variables?

The scatterplot reveals the negative and (relatively) linear relationship between
a person’s age and the degree to which she approves of the right of same-sex
couples to marry: resistance to the idea that same-sex couples should have the
right to marry seems to increase with one’s age, although the relationship is
not a perfect one. Even so, regression analysis would seem to be a promising
means by which to explore the relationship between these two variables.

polling <- read.csv('polling.csv') # Import the polling.csv data.

plot(polling$x1, polling$x3,

xlab = "Age",

ylab = "Views of Same-Sex Marriage",

pch = 19)
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(b) Write out the regression equation. In this case, does it make more sense to
specify x1 or x3 as the dependent variable? That is, should you define the
model as x3 = b0 + b1x1? Or as x1 = b0 + b3x3? Why?

We would most likely specify x3, Same-Sex Marriage, as the dependent vari-
able and x1, Age, as the independent variable. Although we do not use regres-
sion analysis to demonstrate causality, it makes more sense to say that approval
of the right of same-sex couples to marry falls with age than the reverse.

The estimated regression equation is ŷ = 11.757− 0.168x.

reg_eq_polling <- lm(x3 ~ x1, data = polling)

reg_eq_polling

##

## Call:

## lm(formula = x3 ~ x1, data = polling)

##
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## Coefficients:

## (Intercept) x1

## 11.757 -0.168

(c) What is r2?

summary(reg_eq_polling)

##

## Call:

## lm(formula = x3 ~ x1, data = polling)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.8535 -1.0235 -0.2935 0.6705 2.8025

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.7573 1.2276 9.577 0.000000159 ***

## x1 -0.1680 0.0265 -6.340 0.000018289 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.296 on 14 degrees of freedom

## Multiple R-squared: 0.7417,Adjusted R-squared: 0.7232

## F-statistic: 40.19 on 1 and 14 DF, p-value: 0.00001829

Answer: r2 = 0.7417

(d) What is the p-value?

Answer: p-value=0.00001829

(e) Is the regression equation significant at the α = 0.05 level?

Since p-value=0.00001829 is less than the usual values for α (e.g., α = 0.10,
0.05, or 0.01), we say that the estimated regression equation is significant.

(f) Find the 95% confidence interval estimate of the regression coefficient β?

confint(reg_eq_polling, level = 0.95)

## 2.5 % 97.5 %

## (Intercept) 9.1242484 14.3903218

## x1 -0.2248278 -0.1111626

(g) State in words the meaning of the confidence interval estimate of β.

36



There is a 95% probability that the regression coefficient falls in the interval
from -0.2248278 to -0.1111626.

(h) What are your conclusions about the regression analysis?

Answer: The estimated regression equation ŷ = 11.757 − 0.168x allows us
to conclude that we can expect that a change of 1 year is associated with a
change of -0.168 in approval. (We know this because the regression coefficient
is b1 = −0.168.) In this case, the meaning of the intercept term, b0 = 11.757,
is less clear because it represents the predicted value of approval for a person
whose age is 0. Even so, it is important to retain the intercept term in the
equation because it must be included when we want to make predictions.
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