Chapter 13: Statistics with R - 2nd Edition

Robert Stinerock

Student Exercises

In Chapter 13, we return to familiar territory: the data set we import is the Cars93 data that we used extensively in the Chapter 12 Exercises and is found in the MASS package that accompanies the R installation.

1. As a first step, import the Cars93 data into an object named E13_1. How many observations are there? List the variable names. Find the frequency distribution of of vehicle Type.
```
library(MASS)
E13_1 <- Cars93 # Import Cars93 into the object named E13_1.
nrow(E13_1) # Use nrow() function to find number of observations.
## [1] 93
names(E13_1) # Use names() function to list variable names.
## [1] "Manufacturer"
"Model"
"Type"
## [4] "Min.Price"
## [7] "MPG.city"
## [10] "DriveTrain"
"Cylinders" "EngineSize"
## [13] "Horsepower"
    "RPM" "Rev.per.mile"
## [16] "Man.trans.avail" "Fuel.tank.capacity"
## [19] "Length"
    "Wheelbase"
"Passengers"
"Width"
## [22] "Turn.circle"
    "Rear.seat.room"
    "Luggage.room"
## [25] "Weight"
    "Origin"
    "Make"
# Use the table() function to find the distribution
# of vehicle types.
table(E13_1$Type)
##
## Compact Large Midsize Small Sporty Van
## 
```

Answer: There are 93 observations in Cars93 (now E13_1); the 27 variable names are listed above. As to vehicle Type, the frequency distribution is also provided above.
2. Subset the E13_1 data to exclude all observations for which Type is either Sporty or Van; import the result into the object E13_2. How many observations are included in E13_2? Does the frequency distribution for the Type variable in E13_2 show that the Sporty and Van observations have been excluded?

```
# Set indexing [ , ] to drop all observations that include
# either Sporty or Van. (Note that the exclamation point ! must be
# used before each condition. Thus, we direct the code to return
# data that include all variables EXCEPT those for which Type is
# either Sporty or Van.) Import into object E13_2.
E13_2 <- E13_1[!(E13_1$Type=="Sporty") & !(E13_1$Type=="Van"), ]
# Use nrow() function to find number of observations in E13_2.
nrow(E13_2)
## [1] 70
# Use the table() function to find the distribution of
# vehicle types included in object E13_2.
table(E13_2$Type)
##
## Compact Large Midsize Small Sporty Van
## 16 11 22 21 0
```

Answer: Yes, the object E13_2 no longer includes any sporty vehicles or vans. The number of observations in E13_2 has fallen from 93 to 70.
3. For a little more practice at "shaping" our data before the actual analysis, subset E13_2 (one more time) to exclude all variables except for MPG.city, Weight, and Passengers and import into an object named E13_3. List the variable names. How many observations are there?.

```
# Set indexing [ , ] to drop all variables except
# MPG.city, Weight, and Passengers. Import into E13_3.
E13_3 <- E13_2[, c("MPG.city", "Weight","Passengers")]
```

```
# Use names() function to list variable names.
names(E13_3)
## [1] "MPG.city" "Weight" "Passengers"
# Use nrow() function to find number of observations in
# the new object E13_3.
nrow(E13_3)
## [1] 70
# Use summary() and table() functions to find the basic
# descriptive statistics for variables.
summary(E13_3$MPG.city)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 16.00 19.00 22.00 23.17 25.00 46.00
summary(E13_3$Weight)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1695 2534 3008 3010 3495 4105
table(E13_3$Passengers)
##
## 4 5 6
## 11 41 18
```

Answer: There are (still) 70 observations across the 3 variables MPG.city, Weight, and Passengers in the object E13_3. The basic descriptive statistics are provided above. Note: there is no compelling reason why we have to drop all variables as we have here. The statistical part of our analysis can proceed with or without them just fine. For this exercise, we have done so only because it provides the opportunity to get additional practice subsetting data. The data now include only those observations and variables we are most interested in.
4. In an attempt to build a regression model with more explanatory and predictive power than what we were able to achieve using simple linear regression (Chapter 12), we now exchange the independent variable EngineSize for two other variables Weight and Passengers. The dependent variable is still MPG.city. As a first step,
use the pairs () function to verify that each independent variable is linearly related to the dependent variable but not strongly related to one another. Comment.

```
# Use the pairs() function to make a scatterplot of all variables,
# taken pairwise. Set lower.panel = NULL to suppress the (redundant)
# plots in the lower diagonal.
pairs(E13_3, pch = 19, lower.panel = NULL)
```


Answer: A peculiarity that the scatterplots reveal is the odd configuration of points in the two righthand plots, which depict the relationship between the independent variable Passengers and the other two variables, MPG. city and Weight. In particular, the points seem stacked on top of one another for three values of Passengers. When we consider what the variable Passengers measures - a vehicle's passenger capacity (persons) - the explanation is clear: the data include only those vehicles that can accommodate 4, 5 , or 6 passengers. (Remember that we have dropped those observations that include sports cars and vans, vehicles that presumably accommodate different numbers of passengers.) Even so, we can see that the relationship between Passengers and MPG.city is generally negative; that is, vehicles
that can accommodate more passengers tend to have poorer city mileage. Between Passengers and Weight the relationship is generally positive - vehicles that can accommodate more passengers are heavier - an association that is evidence of some multicollinearity. Finally, the relationship between Weight and MPG.city appears to be both negative and relatively linear.
5. Mention has been made (in the preceding exercise) about the possibility of multicollinearity between two of the variables, Passengers and Weight. Can you think of any other way to explore whether this might be a problem?

```
# Use the cor() function to find the correlation.
cor(E13_3$Passengers, E13_3$Weight)
## [1] 0.5732935
```

Answer: While a correlation of $r=0.57$ is a clear and unambiguous indicator of the presence of multicollinearity between these two independent variables, it is not so severe that we cannot conduct the analysis at all. In fact, some authorities report the rule-of-thumb they use as this: if $|r|>0.70$ - that is, if $r>0.70$ or $r<-0.70-$ we would probably not introduce both variables. Since $r=0.57$ does not fall in that range, we include both independent variables in this analysis.
6. Make and inspect a residual plot. Does the pattern reveal anything that might call into question the appropriateness of this methodology when applied to this data?

```
# Use the lm() function to create the model object named
# mr1 (the first multiple regression model).
mr1 <- lm(MPG.city ~ Weight + Passengers, data = E13_3)
# Use the plot() function to create a residual plot. Note that
# both resid(mr1) and fitted(mr1) must be included as arguments.
plot(fitted(mr1), resid(mr1),
    abline(h = 0),
    pch = 19,
    xlab = 'Predicted Value of y',
    ylab = 'Residuals')
```


Answer: This is a good place to reprise the basic assumptions about the model of the relationship between y and the independent variables $x_{1}, x_{2}, \ldots, x_{k}$. The reason why we revisit the discussion here is that an analysis of the residuals is an important step that is sometimes overlooked or even misunderstood by analysts. Recall that the residuals or the error terms are defined as $\epsilon=y_{i}-\hat{y}_{i}$.
(a) The residuals $\epsilon=y_{i}-\hat{y}_{i}$ are independent of one another. That is, the value of $y_{i}-\hat{y}_{i}$ for any given values of $x_{1}, x_{2}, \ldots, x_{k}$ is unrelated to the value of $y_{i}-\hat{y}_{i}$ for any other values of $x_{1}, x_{2}, \ldots, x_{k}$.
(b) The variance of ϵ is $\sigma_{y \mid x_{1}, x_{2}, \ldots, x_{k}}^{2}$ and is constant for all values of $x_{1}, x_{2}, \ldots, x_{k}$. Put another way, the distribution of y values around the regression plane is the same for all values of $x_{1}, x_{2}, \ldots, x_{k}$.
(c) The residuals ϵ are normally-distributed with $E(\epsilon)=0$. In other words, the distribution of y values around the regression plane for any values of x_{1}, x_{2}, \ldots, x_{k} is normal.

A good way to confirm whether a set of variables conforms to the assumptions underlying the correct usage of regression analysis is to create and inspect a plot of the
residuals $\epsilon=y_{i}-\hat{y}_{i}$ against the independent variable x. However, one difference between what we did in the case of simple linear regression and how we go about it for multiple regression is that we do not usually plot the residuals against the independent variable for the reason that we now have more than one of them. (In fact, the residuals are sometimes plotted against the individual independent variables, one by one, but we do not do that here.) In view of this, we can instead plot the residuals against the predicted value of the dependent variable \hat{y}.

A cursory inspection of the residual plot reveals that the above three assumptions underlying the correct application of a regression model to any set of data are not very well satisfied. For one thing, the variance of ϵ is not constant across the range of \hat{y} values. For another, the residuals ϵ do not appear to be normally-distributed.

For these reasons, we must be cautious in not only how we apply the regression (when, for example, for purposes of prediction) but also in our interpretation of it. We can still conduct the regression analysis on the E13_3 data, as we intend to do in the next exercises, but we must bear in mind the reality that (like so many sets of data) the assumptions behind the appropriate application of regression analysis are poorly met.
7. As part of making the residual plot in the preceding exercise, we used the $\operatorname{lm}()$ function to create mr1, the model object that includes all the important information associated with the regression model, including the estimated regression equation itself. What is the estimated regression equation?

```
mr1
##
## Call:
## lm(formula = MPG.city ~ Weight + Passengers, data = E13_3)
##
## Coefficients:
## (Intercept) Weight Passengers
## 53.644618 -0.007617 -1.479297
```

Answer: The estimated regression equation is $\hat{y}=b_{0}+b_{1} x_{1}+b_{2} x_{2}=53.644618-$ $0.007617 x_{1}-1.479297 x_{2}$ where \hat{y} is the predicted dependent variable or MPG.city; as to the independent variables, x_{1} is Weight and x_{2} is Passengers.
8. Find the 70 percent confidence interval estimates of the regression coefficients b_{1} and b_{2}. Describe what these confidence intervals mean.

```
# Use the confint(, level =) function to find the
# confidence interval estimates of the regression coefficients.
```

```
confint(mr1, level = 0.70)
## 15 % 85 %
## (Intercept) 50.594506526 56.69472945
## Weight -0.008404125 -0.00683022
## Passengers -2.200999813 -0.75759321
```

Answer: There is a 70% probability that the regression coefficient b_{1} falls in the interval from -0.008404125 to -0.00683022 , and that the regression coefficient b_{2} falls in the interval from -2.200999813 to -0.75759321 .
9. What does the estimated regression equation tell us?

Answer: At least for this data (which excludes sports cars and vans), we can say that a 1 pound change in vehicle Weight is associated with a 0.007617 change in MPG . city if we hold the Passenger vehicle capacity constant. Moreover, a 1 Passenger change in vehicle capacity is associated with a 1.479297 change in MPG.city if we hold the vehicle Weight constant. Since the partial regression coefficients have a negative sign, we know that (1) MPG.city and Weight are negatively associated: as Weight increases (decreases), the MPG.city decreases (increases); and (2) MPG.city and Passengers are negatively associated: as Passengers increases (decreases), the MPG.city decreases (increases). As in the case with simple linear regression, the intercept term $b_{0}=53.644618$ is not meaningful. We retain it in the regression equation itself, however, for reasons of prediction.
10. What is the strength of association between the independent variables, Weight and Passenger, and MPG.city, the dependent variable? Find the coefficient of determination r^{2} using the following expression (do not use the summary () function to unpack the regression statistics; we will use it later). This exercise provides another opportunity to sharpen your coding skills.

$$
r^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}-\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}=\frac{S S_{y}-S S_{\text {res }}}{S S_{y}}
$$

```
# Find the total sum of squares, ss_y.
ss_y <- sum((E13_3$MPG.city - mean(E13_3$MPG.city)) ^ 2)
# Find the residual sum of squares, ss_res.
ss_res <- sum((resid(mr1)) ~ 2)
```

```
# Find the coefficient of determination. Import the
#result into the object named r_square.
r_square <- (ss_y - ss_res) / ss_y
# What is the value of r-square?
r_square
## [1] 0.7453017
```

Answer: The coefficient of determination, $r^{2}=0.7453017$.
11. What does the coefficient of determination r^{2} reveal about the regression model?

Answer: We interpret $r^{2}=0.7453017$ in the following way: approximately 74.53% of the variation in the dependent variable \hat{y} (MPG.city) can be be accounted for (or explained) by the variation in the two independent variables, x_{1} (Weight) and x_{2} (Passengers). We also know that roughly 25.47% of the variation in \hat{y} remains unexplained or unaccounted for.
12. What is the adjusted coefficient of determination?

Answer: adjusted $-r^{2}=0.7377$.

$$
\text { adjusted }-r^{2}=r^{2}-\frac{k\left(1-r^{2}\right)}{(n-k-1)}
$$

where $k=$ the number of independent variables and $n=$ the sample size. Since in this example, $k=2, n=70$, and $r^{2}=0.7453$, we can easily find the adjusted $-r^{2}$.

$$
\text { adjusted }-r^{2}=0.7453-\frac{2(1-0.7453)}{(70-2-1)}=0.7453-0.0076=0.7377
$$

```
adj_r_square <- r_square - (2 * (1 - r_square)) / (70 - 2 - 1)
adj_r_square
## [1] 0.7376987
```

13. What is the F statistic for the overall regression model?

Answer: $F=98.02815$
where

```
\[
F=\frac{\frac{S S_{\text {reg }}}{k}}{\frac{S S_{\text {res }}}{(n-k-1)}}=\frac{\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{k}}{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{(n-k-1)}}=\frac{\frac{1778.247}{2}}{\frac{607.6957}{67}}=\frac{889.1236}{9.070084}=98.02815
\]
# Find the numerator of the numerator.
ss_reg <- sum((fitted(mr1) - mean(E13_3$MPG.city)) ^ 2)
# Find the numerator of the F statistic.
F_numer <- ss_reg / 2
# What is the numerator of the F statistic?
F_numer
## [1] 889.1236
# Find the numerator of the denominator.
ss_res <- sum((resid(mr1)) ^ 2)
# Find the denominator of the F statistic.
F_denom <- ss_res / (70 - 2 - 1)
# What is the denominator of the F statistic?
F_denom
## [1] 9.070084
# The ratio of F_numer to F_denom is the F statistic.
F <- F_numer / F_denom
```

```
# What is the F statistic?
```

F
\#\# [1] 98.02815
14. For this regression equation, complete the missing entries in the ANOVA table.

Source	SS	$d f$	MS	F
Regression	1778.247			
Residual				
Total	2385.943	69		

Answer: The missing entries are the bolded numbers in the following table.

Source	SS	$d f$	MS	F
Regression	1778.247	$\mathbf{2}$	$\mathbf{8 8 9 . 1 2 3 6}$	$\mathbf{9 8 . 0 2 8 1 5}$
Residual	$\mathbf{6 0 7 . 6 9 5 7}$	$\mathbf{6 7}$	$\mathbf{9 . 0 7 0 0 8 4}$	
Total	2385.943	69		

```
# Calculations for the first row of missing values.
ss_reg <- sum((fitted(mr1) - mean(E13_3$MPG.city)) ^ 2)
ss_reg
## [1] 1778.247
ms_reg <- ss_reg / 2
ms_reg
## [1] 889.1236
# Calculations for the second row of missing values.
ss_res <- sum((resid(mr1)) ^ 2)
ss_res
## [1] 607.6957
ms_res <- ss_res/ (70 - 2 - 1)
ms_res
```

```
## [1] 9.070084
# Calculation for the F statistic.
f <- ms_reg / ms_res
f
## [1] 98.02815
```

15. What is the p-value for $F=98.02815$ for $d f_{N}=k=2$ and $d f_{D}=n-k-1=$ $70-2-1=67$?

Answer: p-value $=p(F \geq 98.02815,2,67)=0.0000$.

```
options(scipen = 999)
pf(98.02815, 2, 67, lower.tail = FALSE)
## [1] 0.00000000000000000000126437
```

16. Complete the missing entries in this table, including the values of t as well as the associated p-values for the two regression coefficients.

Predictor	Estimates	Standard Error	t	p-value
b_{0}	53.6446180	2.9201150		
b_{1}		0.0007534	-10.110	
b_{2}	-1.4792965		-2.141	

Answer: The missing entries are the bolded numbers in the following table.

Predictor	Estimates	Standard Error	t	p-value
b_{0}	53.6446180	2.9201150	$\mathbf{1 8 . 3 7 1}$	$\mathbf{0 . 0 0 0 0}$
b_{1}	$\mathbf{- 0 . 0 0 7 6 1 7 2}$	0.0007534	-10.110	$\mathbf{0 . 0 0 0 0}$
b_{2}	-1.4792965	$\mathbf{0 . 6 9 0 9 4 4 1}$	-2.141	$\mathbf{0 . 0 3 5 9}$

```
# p-value for bo
2 * pt(18.371, 68, lower.tail = FALSE)
## [1] 0.00000000000000000000000000004534737
```

```
# p-value for b1
2 * pt(-10.110, 68)
## [1] 0.000000000000003486782
# p-value for b2
2 * pt(-2.141, 68)
## [1] 0.03586164
```

17. Use the summary () extractor function to check our work. Remember to use the mr1 model object as the argument. Are the reported statistics in agreement with those worked out in the previous exercises?
```
# Use options(scipen=999) to report extremely small values
# in standard (not scientific) notation.
options(scipen = 999)
# Use the summary() function to extract the regression statistics.
summary(mr1)
##
## Call:
## lm(formula = MPG.city ~ Weight + Passengers, data = E13_3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6650 -1.2245 0.0043 0.9515 12.1729
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 53.6446180 2.9201150 18.371<0.0000000000000002 ***
## Weight -0.0076172 0.0007534 -10.110 0.00000000000000411 ***
## Passengers -1.4792965 0.6909441 -2.141 0.0359 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.012 on 67 degrees of freedom
## Multiple R-squared: 0.7453,Adjusted R-squared: 0.7377
## F-statistic: 98.03 on 2 and 67 DF, p-value: < 0.00000000000000022
```

Answer: All the results arrived at using the summary() function confirm what has been found in the preceding exercises: the estimated regression equation is
$\hat{y}=53.6446180-0.0076172 x_{1}-1.4792965 x_{2}$; the coefficient of determination is $r^{2}=0.7453$; the adjusted $-r^{2}=0.7377$; the F statistic is $F=98.03$; and the F statistic has p-value $=0.0000$.
18. Use the estimated regression equation and the predict() function to find the predicted values of MPG.city for the following values: for the first pair Weight=2000 and Passengers=6, for the second pair Weight=3000 and Passengers=5, and the third pair Weight=4000 and Passengers=4.

```
# Use data.frame() to create a new object. Name the
# new object newvalues.
newvalues <- data.frame(Weight = c(2000, 3000, 4000),
    Passengers = c(6, 5, 4))
# Examine the contents of the object named newvalues
# just to make sure it contains what we think it does.
newvalues
## Weight Passengers
## 1 2000 6
## 2 3000 5
## 3 4000 4
# Use predict() function to provide the predicted values
# of miles per gallon for the new values of Weight and Passengers.
predict(mr1, newvalues)
## 1
## 29.53449 23.39662 17.25874
```

Answer: For the first pair Weight=2000 and Passengers=6, the predicted value \hat{y} is 29.53449 mpg ; for the second pair Weight=3000 and Passengers=5, the predicted value \hat{y} is 23.39662; and for the third pair Weight=4000 and Passengers=4, the predicted value \hat{y} is 17.25874 mpg .
19. What are the predicted values of MPG.city that were used to calibrate the estimated regression equation $\hat{y}=53.6446180-0.0076172 x_{1}-1.4792965 x_{2}$? Import those predicted values into an object named mileage_predicted and list the first and last three elements.

```
# Use fitted(mr1) function to create the predicted
# values of the dependent variable. Import those values into
# the object named mileage_predicted.
mileage_predicted <- fitted(mr1)
# Use the head(,3) and tail(,3) functions to list the
# first and final three values of predicted values.
head(mileage_predicted, 3)
## 1 2 3
## 25.64368 19.13100 20.54018
tail(mileage_predicted, 3)
## 90 92 93
## 23.51088 23.51088 21.53041
```

20. Merge the mileage_predicted object (created in the preceding exercise) with E13_3, and name the resulting object E13_4. List the elements of E13_4. Find the correlation of the actual and predicted variables; that is, the correlation of MPG.city and mileage_predicted. Once you have the correlation, square it (i.e., raise it to the second power). Comment on the square of the correlation. What is it?
```
# Use the cbind() function to bind the column
# mileage_predicted to E13_3. Name the new object E13_4.
E13_4 <- cbind(E13_3, mileage_predicted)
# List all elements of E13_4.
E13_4
\begin{tabular}{lrrrr} 
\#\# & MPG.city & Weight & Passengers mileage_predicted \\
\#\# 1 & 25 & 2705 & 5 & 25.64368 \\
\#\# 2 & 18 & 3560 & 5 & 19.13100 \\
\#\# 3 & 20 & 3375 & 5 & 20.54018 \\
\#\# 4 & 19 & 3405 & 6 & 18.83237 \\
\#\# 5 & 22 & 3640 & 4 & 20.00092 \\
\#\# 6 & 22 & 2880 & 6 & 22.83138 \\
\#\# 7 & 19 & 3470 & 6 & 18.33725 \\
\#\# 8 & 16 & 4105 & 6 & 13.50035 \\
\#\# 9 & 19 & 3495 & 5 & 19.62612
\end{tabular}
```

\#\# 10	16	3620	6	17.19467
\#\# 11	16	3935	5	16.27456
\#\# 12	25	2490	5	27.28138
\#\# 13	25	2785	5	25.03431
\#\# 15	21	3195	6	20.43197
\#\# 18	17	3910	6	14.98569
\#\# 20	20	3515	6	17.99448
\#\# 21	23	3085	6	21.26986
\#\# 22	20	3570	6	17.57553
\#\# 23	29	2270	5	28.95715
\#\# 24	23	2670	5	25.91029
\#\# 25	22	2970	6	22.14584
\#\# 27	21	3080	6	21.30795
\#\# 29	29	2295	5	28.76672
\#\# 30	20	3490	6	18.18491
\#\# 31	31	1845	4	33.67375
\#\# 32	23	2530	5	26.97669
\#\# 33	22	2690	5	25.75794
\#\# 37	21	3325	5	20.92104
\#\# 38	18	3950	6	14.68101
\#\# 39	46	1695	4	34.81632
\#\# 42	42	2350	4	29.82708
\#\# 43	24	3040	4	24.57123
\#\# 44	29	2345	5	28.38587
\#\# 45	22	2620	5	26.29114
\#\# 47	20	2885	5	24.27259
\#\# 48	17	4000	5	15.77945
\#\# 49	18	3510	5	19.51186
\#\# 50	18	3515	4	20.95307
\#\# 51	17	3695	6	16.62339
\#\# 52	18	4055	6	13.88120
\#\# 53	29	2325	4	30.01751
\#\# 54	28	2440	5	27.66223
\#\# 55	26	2970	5	23.62513
\#\# 58	20	2920	5	24.00599
\#\# 59	19	3525	5	19.39760
\#\# 61	19	3610	5	18.75014
\#\# 62	29	2295	5	28.76672
\#\# 63	18	3730	5	17.83608
\#\# 64	29	2545	5	26.86243
\#\# 65	24	3050	5	23.01576
\#\# 67	21	3200	5	21.87318
\#\# 68	24	2910	5	24.08216
\#\# 69	23	2890	5	24.23451
\#\# 71	19	3470	6	18.33725
\#\# 73	31	2350	4	29.82708
\#\# 74	23	2575	5	26.63392
\#\# 76	19	3450	5	19.96889

```
\begin{tabular}{lllll} 
\#\# 77 & 19 & 3495 & 6 & 18.14682 \\
\#\# 78 & 20 & 2775 & 5 & 25.11048 \\
\#\# 79 & 28 & 2495 & 5 & 27.24329 \\
\#\# 80 & 33 & 2045 & 4 & 32.15031 \\
\#\# 81 & 25 & 2490 & 5 & 27.28138 \\
\#\# 82 & 23 & 3085 & 5 & 22.74916 \\
\#\# 83 & 39 & 1965 & 4 & 32.75969 \\
\#\# 84 & 32 & 2055 & 5 & 30.59485 \\
\#\# 86 & 22 & 3030 & 5 & 23.16810 \\
\#\# 88 & 25 & 2240 & 4 & 30.66497 \\
\#\# 90 & 21 & 2985 & 5 & 23.51088 \\
\#\# 92 & 21 & 2985 & 5 & 23.51088 \\
\#\# 93 & 20 & 3245 & 5 & 21.53041
\end{tabular}
# Find the correlation of the actual and predicted
# dependent variables. Store the result in an object named r.
r <- cor(E13_4$MPG.city, mileage_predicted)
# Examine the contents of r.
r
## [1] 0.8633086
# Square the value of r.
r^2
## [1] 0.7453017
```

The square of the correlation of the actual dependent variable and predicted dependent variable equals the coefficient of determination, r^{2}.
21. Consider the estimated regression equation: $\hat{y}=3536+1183 x_{1}-1208 x_{2}$. Suppose the model is changed to reflect the deletion of x_{2} and the resulting estimated simple linear equation becomes $\hat{y}=-10663+1386 x_{1}$.
(a) How should we interpret the meaning of the coefficient on x_{1} in the estimated simple linear regression equation $\hat{y}=-10663+1386 x_{1}$?

A 1 unit change in the independent variable x_{1} is associated with an expected change of 1386 units in the dependent variable \hat{y}.
(b) How should we interpret the meaning of the coefficient on x_{1} in the estimated multiple regression equation $\hat{y}=3536+1183 x_{1}-1208 x_{2}$?

A 1 unit change in the independent variable x_{1} is associated with an expected change of 1183 in the dependent variable \hat{y} if the other independent variable x_{2} is held constant.
(c) Is there any evidence of multicollinearity? What might that evidence be?

There is some multicollinearity between x_{1} and x_{2} because the coefficient has changed from 1386 to 1183 with the introduction of x_{2} into the regression model. In the case when the independent variables are perfectly uncorrelated, the coefficient will be unchanged.
22. Interpret the results below and answer the following questions. Suppose we regress the dependent variable y on four independent variables x_{1}, x_{2}, x_{3}, and x_{4}. After running the regression on $n=16$ observations, we have the following information: $S S_{\text {reg }}=946.181$ and $S S_{\text {res }}=49.773$.
(a) What is the r^{2} ?

Answer: 0.95
Since $S S_{y}=S S_{\text {reg }}+S S_{\text {res }}=946.181+49.773=995.954$, we know that

$$
r^{2}=\frac{S S_{r e g}}{S S_{y}}=\frac{946.181}{995.954}=0.95
$$

(b) What is the adjusted- r^{2}

Answer: 0.932
adjusted $-r^{2}=r^{2}-\frac{k\left(1-r^{2}\right)}{(n-k-1)}=0.95-\frac{4(1-0.95)}{(16-4-1)}=0.95-0.018=0.932$
(c) What is the F statistic?

Answer: $F=52.277$

$$
F=\frac{S S_{r e g} / k}{S S_{\text {res }} /(n-k-1)}=\frac{946.181 / 4}{49.773 / 11}=\frac{236.55}{4.52}=52.277
$$

(d) What is the p-value?

Answer: p-value $=0.0000$

$$
=p(F>52.277,4,11)=0.0000
$$

```
pf(52.277, 4, 11, lower.tail = FALSE)
## [1] 0.0000004338219
```

(e) Is the overall regression model significant? Test at $\alpha=0.05$ level of significance.

Yes, since p-value $=0.0000<\alpha=0.05$, we conclude that the estimated regression model is significant.
23. Referring to the previous exercise, suppose we also have the following information about the partial regression coefficients.

Independent Variables	Coefficients b_{i}	Standard Error $s_{b_{i}}$
x_{1}	$b_{1}=-0.0008155$	$s_{b_{1}}=0.003$
x_{2}	$b_{2}=-2.48400$	$s_{b_{2}}=0.960$
x_{3}	$b_{3}=0.05901$	$s_{b_{3}}=0.015$
x_{4}	$b_{4}=0.06928$	$s_{b_{4}}=0.038$

(a) Is b_{1} significant at $\alpha=0.05$? What is its t value? What is its p-value?

Since $t=-0.2718$ and p-value $=0.7908>\alpha=0.05, b_{1}$ is not significant.

$$
t=\frac{b_{1}}{s_{b_{1}}}=\frac{-0.0008155}{0.003}=-0.2718
$$

2 * pt (-0.2718, 11)
\#\# [1] 0.7908094
(b) Is b_{2} significant at $\alpha=0.05$? What is its t value? What is its p-value?

Since $t=-2.5875$ and p-value $=0.02525<\alpha=0.05, b_{2}$ is significant.

$$
t=\frac{b_{2}}{s_{b_{2}}}=\frac{-2.48400}{0.960}=-2.5875
$$

```
2 * pt(-2.5875, 11)
## [1] 0.0252505
```

(c) Is b_{3} significant at $\alpha=0.05$? What is its t value? What is its p-value?

Since $t=3.9340$ and p-value $=0.002336<\alpha=0.05, b_{3}$ is significant.

$$
t=\frac{b_{3}}{s_{b_{3}}}=\frac{0.05901}{0.015}=3.9340
$$

```
2 * pt(3.9340, 11, lower.tail = FALSE)
## [1] 0.002335972
```

(d) Is b_{4} significant at $\alpha=0.05$? What is its t value? What is its p-value?

Since $t=1.8232$ and p-value $=0.09554>\alpha=0.05, b_{4}$ is not significant.

$$
t=\frac{b_{4}}{s_{b_{4}}}=\frac{0.06928}{0.038}=1.8232
$$

```
2* pt(1.8232, 11, lower.tail = FALSE)
## [1] 0.09553817
```

24. Consider the following estimated multiple regression equation:

$$
\hat{y}=-0.59141+0.05800 x_{1}+0.84490 x_{2}+0.11419 x_{3}
$$

(a) Complete the missing entries in this ANOVA table.

Source	SS	$d f$	MS	F	p-value
Regression	21.83373				
Residual					
Total	23.9	9			

The answers to part (a) are the bolded numbers in the following table.

Source	SS	$d f$	MS	F	p-value
Regression	21.83373	$\mathbf{3}$	$\mathbf{7 . 2 7 7 9}$	$\mathbf{2 1 . 1 3 3 1}$	$\mathbf{0 . 0 0 1 3 6 7}$
Residual	$\mathbf{2 . 0 6 6 3}$	$\mathbf{6}$	$\mathbf{0 . 3 4 4 4}$		
Total	23.9	9			

```
pf(21.1331, 3, 6, lower.tail = FALSE)
## [1] 0.001366979
```

(b) Complete the missing entries in this coefficients table.

Predictor	Estimates	Standard Error	t	p-value
b_{0}	-0.59141	1.03092		
b_{1}		0.01082	5.362	
b_{2}	0.84490		3.439	
b_{3}		0.13877	0.823	

The answers to part (b) are the bolded numbers in the following table.

Predictor	Estimates	Standard Error	t	p-value
b_{0}	-0.59141	1.03092	$\mathbf{- 0 . 5 7 3 7}$	$\mathbf{0 . 5 8 7}$
b_{1}	$\mathbf{0 . 0 5 8 0}$	0.01082	5.362	$\mathbf{0 . 0 0 1 7 2 5}$
b_{2}	0.84490	$\mathbf{0 . 2 4 5 7}$	3.439	$\mathbf{0 . 0 1 3 8 2}$
b_{3}	$\mathbf{0 . 1 1 4 2}$	0.13877	0.823	$\mathbf{0 . 4 4 2}$

```
# p-value for bo
2 * pt(-0.5737, 6)
## [1] 0.5870154
# p-value for b1
2* pt(5.362, 6, lower.tail = FALSE)
## [1] 0.001724838
# p-value for b2
2 * pt(3.439, 6, lower.tail = FALSE)
## [1] 0.01381786
# p-value for b3
2 * pt(0.823, 6, lower.tail = FALSE)
## [1] 0.4419823
```

(c) What is the value of r^{2} ?

Answer: 0.914

$$
r^{2}=\frac{S S_{r e g}}{S S_{y}}=\frac{21.83373}{23.9}=0.914
$$

(d) What is the adjusted $-r^{2}$?

Answer: 0.871
adjusted $-r^{2}=r^{2}-\frac{k\left(1-r^{2}\right)}{(n-k-1)}=0.914-\frac{3(1-0.914)}{(10-3-1)}=0.914-0.043=0.871$
25. This exercise uses the mtcars data set that is included in the basic R installation.
(a) Use the pairs() function to create a scatterplot for 3 variables: mpg, cyl, and wt. What can we say about the relationships between these variables?

Answer: We can apply the pairs() function to a subset of mtcars which contains only variables mpg (column 1), cyl (column 2), and wt (column 6). We use the tail() function to identify the column position of each variable.

```
tail(mtcars)
```

| \#\# | mpg cyl | disp | hp | drat | wt | qsec | vs am gear carb | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# Porsche 914-2 | 26.0 | 4 | 120.3 | 91 | 4.43 | 2.140 | 16.7 | 0 | 1 | 5 | 2 |
| \#\# Lotus Europa | 30.4 | 4 | 95.1 | 113 | 3.77 | 1.513 | 16.9 | 1 | 1 | 5 | 2 |
| \#\# Ford Pantera L 15.8 | 8 | 351.0 | 264 | 4.22 | 3.170 | 14.5 | 0 | 1 | 5 | 4 | |
| \#\# Ferrari Dino | 19.7 | 6 | 145.0 | 175 | 3.62 | 2.770 | 15.5 | 0 | 1 | 5 | 6 |
| \#\# Maserati Bora | 15.0 | 8 | 301.0 | 335 | 3.54 | 3.570 | 14.6 | 0 | 1 | 5 | 8 |
| \#\# Volvo 142E | 21.4 | 4 | 121.0 | 109 | 4.11 | 2.780 | 18.6 | 1 | 1 | 4 | 2 |
| pairs (mtcars[, c(1, 2, 6)], pch $=19, ~ l o w e r . p a n e l ~=~ N U L L) ~$ | | | | | | | | | | | |

From the scatterplot, it is clear that mpg is negatively related to cyl and wt and that cyl is positively related to wt.
(b) Regress the dependent variable mpg on the variables cyl and wt. Write out the estimated regression equation.

```
reg_eq_mileage <- lm(mpg ~ cyl + wt, data = mtcars)
reg_eq_mileage
##
## Call:
## lm(formula = mpg ~ cyl + wt, data = mtcars)
##
## Coefficients:
## (Intercept) cyl wt
## 39.686 -1.508 -3.191
```

The estimated regression equation: $\hat{y}=39.69-1.51 x_{1}-3.19 x_{2}$, where \hat{y} is the predicted value of mpg, x_{1} is cyl, and x_{2} is wt. That the partial regression coefficients have a negative sign is unsurprising in view of the scatterplots above.
(c) Use the fitted function to create the predicted dependent variables for the values of cyl and wt in the original data set. Just to check that the predictions are correct, select two observations and work out the predicted value manually.

```
predicted <- fitted(reg_eq_mileage)
tail(predicted, 2)
## Maserati Bora Volvo 142E
## 16.23213 24.78418
```

From part (a), we see that for the Maserati Bora, cyl $=8$ and wt $=3.57$. Plugging these values into the estimated regression equation, we find that $\hat{y}=39.69-1.51 x_{1}-3.19 x_{2}=39.69-1.51(8)-3.19(3.57)=16.23$. For the Volvo $142 \mathrm{E}, \mathrm{cyl}=4$ and $\mathrm{wt}=2.78, \hat{y}=39.69-1.51(4)-3.19(2.78)=24.78$.
(d) Use the predict() function to create the predicted dependent variable for the following pairs of values of the independent variables: for the first pair cyl=4 and $\mathrm{wt}=5$; for the second pair cyl=8 and $\mathrm{wt}=2$

```
newvalues <- data.frame(cyl = c(4, 8), wt =c(5, 2))
predict(reg_eq_mileage, newvalues)
## 1 2
## 17.70022 21.24196
```

To check these predicted values, we simply plug (a) cyl = 4 and wt $=5$ and (b) cyl $=8$ and $\mathrm{wt}=2$ into $\hat{y}=39.69-1.51 x_{1}-3.19 x_{2}$ and find \hat{y} in each case: $\hat{y}=39.69-1.51(4)-3.19(5)=17.70$ and $\hat{y}=39.69-1.51(8)-3.19(2)=21.24$.

