
Chapter 13: Statistics with R - 2nd Edition

Robert Stinerock

Student Exercises

In Chapter 13, we return to familiar territory: the data set we import is the Cars93

data that we used extensively in the Chapter 12 Exercises and is found in the MASS pack-
age that accompanies the R installation.

1. As a first step, import the Cars93 data into an object named E13 1. How many
observations are there? List the variable names. Find the frequency distribution of
of vehicle Type.

library(MASS)

E13_1 <- Cars93 # Import Cars93 into the object named E13_1.

nrow(E13_1) # Use nrow() function to find number of observations.

## [1] 93

names(E13_1) # Use names() function to list variable names.

## [1] "Manufacturer" "Model" "Type"

## [4] "Min.Price" "Price" "Max.Price"

## [7] "MPG.city" "MPG.highway" "AirBags"

## [10] "DriveTrain" "Cylinders" "EngineSize"

## [13] "Horsepower" "RPM" "Rev.per.mile"

## [16] "Man.trans.avail" "Fuel.tank.capacity" "Passengers"

## [19] "Length" "Wheelbase" "Width"

## [22] "Turn.circle" "Rear.seat.room" "Luggage.room"

## [25] "Weight" "Origin" "Make"

# Use the table() function to find the distribution

# of vehicle types.

table(E13_1$Type)

##

## Compact Large Midsize Small Sporty Van

## 16 11 22 21 14 9
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Answer: There are 93 observations in Cars93 (now E13 1); the 27 variable names
are listed above. As to vehicle Type, the frequency distribution is also provided
above.

2. Subset the E13 1 data to exclude all observations for which Type is either Sporty or
Van; import the result into the object E13 2. How many observations are included
in E13 2? Does the frequency distribution for the Type variable in E13 2 show that
the Sporty and Van observations have been excluded?

# Set indexing [ , ] to drop all observations that include

# either Sporty or Van. (Note that the exclamation point ! must be

# used before each condition. Thus, we direct the code to return

# data that include all variables EXCEPT those for which Type is

# either Sporty or Van.) Import into object E13_2.

E13_2 <- E13_1[!(E13_1$Type=="Sporty") & !(E13_1$Type=="Van"), ]

# Use nrow() function to find number of observations in E13_2.

nrow(E13_2)

## [1] 70

# Use the table() function to find the distribution of

# vehicle types included in object E13_2.

table(E13_2$Type)

##

## Compact Large Midsize Small Sporty Van

## 16 11 22 21 0 0

Answer: Yes, the object E13 2 no longer includes any sporty vehicles or vans. The
number of observations in E13 2 has fallen from 93 to 70.

3. For a little more practice at “shaping” our data before the actual analysis, subset
E13 2 (one more time) to exclude all variables except for MPG.city, Weight, and
Passengers and import into an object named E13 3. List the variable names. How
many observations are there?.

# Set indexing [ , ] to drop all variables except

# MPG.city, Weight, and Passengers. Import into E13_3.

E13_3 <- E13_2[, c("MPG.city", "Weight","Passengers")]
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# Use names() function to list variable names.

names(E13_3)

## [1] "MPG.city" "Weight" "Passengers"

# Use nrow() function to find number of observations in

# the new object E13_3.

nrow(E13_3)

## [1] 70

# Use summary() and table() functions to find the basic

# descriptive statistics for variables.

summary(E13_3$MPG.city)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 16.00 19.00 22.00 23.17 25.00 46.00

summary(E13_3$Weight)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1695 2534 3008 3010 3495 4105

table(E13_3$Passengers)

##

## 4 5 6

## 11 41 18

Answer: There are (still) 70 observations across the 3 variables MPG.city, Weight,
and Passengers in the object E13 3. The basic descriptive statistics are provided
above. Note: there is no compelling reason why we have to drop all variables as we
have here. The statistical part of our analysis can proceed with or without them
just fine. For this exercise, we have done so only because it provides the opportu-
nity to get additional practice subsetting data. The data now include only those
observations and variables we are most interested in.

4. In an attempt to build a regression model with more explanatory and predictive
power than what we were able to achieve using simple linear regression (Chapter
12), we now exchange the independent variable EngineSize for two other variables
Weight and Passengers. The dependent variable is still MPG.city. As a first step,
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use the pairs() function to verify that each independent variable is linearly related
to the dependent variable but not strongly related to one another. Comment.

# Use the pairs() function to make a scatterplot of all variables,

# taken pairwise. Set lower.panel = NULL to suppress the (redundant)

# plots in the lower diagonal.

pairs(E13_3, pch = 19, lower.panel = NULL)
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Answer: A peculiarity that the scatterplots reveal is the odd configuration of points
in the two righthand plots, which depict the relationship between the independent
variable Passengers and the other two variables, MPG.city and Weight. In partic-
ular, the points seem stacked on top of one another for three values of Passengers.
When we consider what the variable Passengers measures—a vehicle’s passenger
capacity (persons)—the explanation is clear: the data include only those vehicles
that can accommodate 4, 5, or 6 passengers. (Remember that we have dropped
those observations that include sports cars and vans, vehicles that presumably ac-
commodate different numbers of passengers.) Even so, we can see that the rela-
tionship between Passengers and MPG.city is generally negative; that is, vehicles
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that can accommodate more passengers tend to have poorer city mileage. Between
Passengers and Weight the relationship is generally positive—vehicles that can
accommodate more passengers are heavier—an association that is evidence of some
multicollinearity. Finally, the relationship between Weight and MPG.city appears
to be both negative and relatively linear.

5. Mention has been made (in the preceding exercise) about the possibility of multi-
collinearity between two of the variables, Passengers and Weight. Can you think
of any other way to explore whether this might be a problem?

# Use the cor() function to find the correlation.

cor(E13_3$Passengers, E13_3$Weight)

## [1] 0.5732935

Answer: While a correlation of r = 0.57 is a clear and unambiguous indicator of the
presence of multicollinearity between these two independent variables, it is not so
severe that we cannot conduct the analysis at all. In fact, some authorities report
the rule-of-thumb they use as this: if |r| > 0.70—that is, if r > 0.70 or r < −0.70—
we would probably not introduce both variables. Since r = 0.57 does not fall in
that range, we include both independent variables in this analysis.

6. Make and inspect a residual plot. Does the pattern reveal anything that might call
into question the appropriateness of this methodology when applied to this data?

# Use the lm() function to create the model object named

# mr1 (the first multiple regression model).

mr1 <- lm(MPG.city ~ Weight + Passengers, data = E13_3)

# Use the plot() function to create a residual plot. Note that

# both resid(mr1) and fitted(mr1) must be included as arguments.

plot(fitted(mr1), resid(mr1),

abline(h = 0),

pch = 19,

xlab = 'Predicted Value of y',

ylab = 'Residuals')
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Answer: This is a good place to reprise the basic assumptions about the model of
the relationship between y and the independent variables x1, x2,..., xk. The reason
why we revisit the discussion here is that an analysis of the residuals is an important
step that is sometimes overlooked or even misunderstood by analysts. Recall that
the residuals or the error terms are defined as ε = yi − ŷi.

(a) The residuals ε = yi− ŷi are independent of one another. That is, the value of
yi − ŷi for any given values of x1, x2,..., xk is unrelated to the value of yi − ŷi
for any other values of x1, x2,..., xk.

(b) The variance of ε is σ2
y|x1,x2,...,xk

and is constant for all values of x1, x2,..., xk.
Put another way, the distribution of y values around the regression plane is
the same for all values of x1, x2,..., xk.

(c) The residuals ε are normally-distributed with E(ε) = 0. In other words, the
distribution of y values around the regression plane for any values of x1, x2,...,
xk is normal.

A good way to confirm whether a set of variables conforms to the assumptions un-
derlying the correct usage of regression analysis is to create and inspect a plot of the
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residuals ε = yi − ŷi against the independent variable x . However, one difference
between what we did in the case of simple linear regression and how we go about it
for multiple regression is that we do not usually plot the residuals against the inde-
pendent variable for the reason that we now have more than one of them. (In fact,
the residuals are sometimes plotted against the individual independent variables,
one by one, but we do not do that here.) In view of this, we can instead plot the
residuals against the predicted value of the dependent variable ŷ.

A cursory inspection of the residual plot reveals that the above three assumptions
underlying the correct application of a regression model to any set of data are not
very well satisfied. For one thing, the variance of ε is not constant across the range
of ŷ values. For another, the residuals ε do not appear to be normally-distributed.

For these reasons, we must be cautious in not only how we apply the regression
(when, for example, for purposes of prediction) but also in our interpretation of it.
We can still conduct the regression analysis on the E13 3 data, as we intend to do
in the next exercises, but we must bear in mind the reality that (like so many sets
of data) the assumptions behind the appropriate application of regression analysis
are poorly met.

7. As part of making the residual plot in the preceding exercise, we used the lm()

function to create mr1, the model object that includes all the important information
associated with the regression model, including the estimated regression equation
itself. What is the estimated regression equation?

mr1

##

## Call:

## lm(formula = MPG.city ~ Weight + Passengers, data = E13_3)

##

## Coefficients:

## (Intercept) Weight Passengers

## 53.644618 -0.007617 -1.479297

Answer: The estimated regression equation is ŷ = b0 + b1x1 + b2x2 = 53.644618 −
0.007617x1 − 1.479297x2 where ŷ is the predicted dependent variable or MPG.city;
as to the independent variables, x1 is Weight and x2 is Passengers.

8. Find the 70 percent confidence interval estimates of the regression coefficients b1
and b2. Describe what these confidence intervals mean.

# Use the confint( , level =) function to find the

# confidence interval estimates of the regression coefficients.
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confint(mr1, level = 0.70)

## 15 % 85 %

## (Intercept) 50.594506526 56.69472945

## Weight -0.008404125 -0.00683022

## Passengers -2.200999813 -0.75759321

Answer: There is a 70% probability that the regression coefficient b1 falls in the in-
terval from -0.008404125 to -0.00683022, and that the regression coefficient b2 falls
in the interval from -2.200999813 to -0.75759321.

9. What does the estimated regression equation tell us?

Answer: At least for this data (which excludes sports cars and vans), we can say that
a 1 pound change in vehicle Weight is associated with a 0.007617 change in MPG.city

if we hold the Passenger vehicle capacity constant. Moreover, a 1 Passenger change
in vehicle capacity is associated with a 1.479297 change in MPG.city if we hold the
vehicle Weight constant. Since the partial regression coefficients have a negative
sign, we know that (1) MPG.city and Weight are negatively associated: as Weight

increases (decreases), the MPG.city decreases (increases); and (2) MPG.city and
Passengers are negatively associated: as Passengers increases (decreases), the
MPG.city decreases (increases). As in the case with simple linear regression, the
intercept term b0 = 53.644618 is not meaningful. We retain it in the regression
equation itself, however, for reasons of prediction.

10. What is the strength of association between the independent variables, Weight and
Passenger, and MPG.city, the dependent variable? Find the coefficient of deter-
mination r2 using the following expression (do not use the summary() function to
unpack the regression statistics; we will use it later). This exercise provides another
opportunity to sharpen your coding skills.

r2 =

∑
(yi − y)2 −

∑
(yi − ŷi)2∑

(yi − y)2
=
SSy − SSres

SSy

# Find the total sum of squares, ss_y.

ss_y <- sum((E13_3$MPG.city - mean(E13_3$MPG.city)) ^ 2)

# Find the residual sum of squares, ss_res.

ss_res <- sum((resid(mr1)) ^ 2)
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# Find the coefficient of determination. Import the

#result into the object named r_square.

r_square <- (ss_y - ss_res) / ss_y

# What is the value of r-square?

r_square

## [1] 0.7453017

Answer: The coefficient of determination, r2 = 0.7453017.

11. What does the coefficient of determination r2 reveal about the regression model?

Answer: We interpret r2 = 0.7453017 in the following way: approximately 74.53%
of the variation in the dependent variable ŷ (MPG.city) can be be accounted for
(or explained) by the variation in the two independent variables, x1 (Weight) and
x2 (Passengers). We also know that roughly 25.47% of the variation in ŷ remains
unexplained or unaccounted for.

12. What is the adjusted coefficient of determination?

Answer: adjusted-r2 = 0.7377.

adjusted−r2 = r2 − k(1− r2)
(n− k − 1)

where k = the number of independent variables and n = the sample size. Since in
this example, k = 2, n = 70, and r2 = 0.7453, we can easily find the adjusted-r2.

adjusted−r2 = 0.7453− 2(1− 0.7453)

(70− 2− 1)
= 0.7453− 0.0076 = 0.7377

adj_r_square <- r_square - (2 * (1 - r_square)) / (70 - 2 - 1)

adj_r_square

## [1] 0.7376987
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13. What is the F statistic for the overall regression model?

Answer: F = 98.02815

where

F =

SSreg

k
SSres

(n− k − 1)

=

∑
(ŷi − y)2

k∑
(yi − ŷi)2

(n− k − 1)

=

1778.247

2
607.6957

67

=
889.1236

9.070084
= 98.02815

# Find the numerator of the numerator.

ss_reg <- sum((fitted(mr1) - mean(E13_3$MPG.city)) ^ 2)

# Find the numerator of the F statistic.

F_numer <- ss_reg / 2

# What is the numerator of the F statistic?

F_numer

## [1] 889.1236

# Find the numerator of the denominator.

ss_res <- sum((resid(mr1)) ^ 2)

# Find the denominator of the F statistic.

F_denom <- ss_res / (70 - 2 - 1)

# What is the denominator of the F statistic?

F_denom

## [1] 9.070084

# The ratio of F_numer to F_denom is the F statistic.

F <- F_numer / F_denom
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# What is the F statistic?

F

## [1] 98.02815

14. For this regression equation, complete the missing entries in the ANOVA table.

Source SS df MS F

Regression 1778.247
Residual

Total 2385.943 69

Answer: The missing entries are the bolded numbers in the following table.

Source SS df MS F

Regression 1778.247 2 889.1236 98.02815
Residual 607.6957 67 9.070084

Total 2385.943 69

# Calculations for the first row of missing values.

ss_reg <- sum((fitted(mr1) - mean(E13_3$MPG.city)) ^ 2)

ss_reg

## [1] 1778.247

ms_reg <- ss_reg / 2

ms_reg

## [1] 889.1236

# Calculations for the second row of missing values.

ss_res <- sum((resid(mr1)) ^ 2)

ss_res

## [1] 607.6957

ms_res <- ss_res/ (70 - 2 - 1)

ms_res
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## [1] 9.070084

# Calculation for the F statistic.

f <- ms_reg / ms_res

f

## [1] 98.02815

15. What is the p-value for F = 98.02815 for dfN = k = 2 and dfD = n − k − 1 =
70− 2− 1 = 67?

Answer: p-value=p(F ≥ 98.02815, 2, 67) = 0.0000.

options(scipen = 999)

pf(98.02815, 2, 67, lower.tail = FALSE)

## [1] 0.0000000000000000000126437

16. Complete the missing entries in this table, including the values of t as well as the
associated p-values for the two regression coefficients.

Predictor Estimates Standard Error t p-value

b0 53.6446180 2.9201150
b1 0.0007534 -10.110
b2 -1.4792965 -2.141

Answer: The missing entries are the bolded numbers in the following table.

Predictor Estimates Standard Error t p-value

b0 53.6446180 2.9201150 18.371 0.0000
b1 -0.0076172 0.0007534 -10.110 0.0000
b2 -1.4792965 0.6909441 -2.141 0.0359

# p-value for bo

2 * pt(18.371, 68, lower.tail = FALSE)

## [1] 0.0000000000000000000000000004534737
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# p-value for b1

2 * pt(-10.110, 68)

## [1] 0.000000000000003486782

# p-value for b2

2 * pt(-2.141, 68)

## [1] 0.03586164

17. Use the summary() extractor function to check our work. Remember to use the mr1

model object as the argument. Are the reported statistics in agreement with those
worked out in the previous exercises?

# Use options(scipen=999) to report extremely small values

# in standard (not scientific) notation.

options(scipen = 999)

# Use the summary() function to extract the regression statistics.

summary(mr1)

##

## Call:

## lm(formula = MPG.city ~ Weight + Passengers, data = E13_3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.6650 -1.2245 0.0043 0.9515 12.1729

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 53.6446180 2.9201150 18.371 < 0.0000000000000002 ***

## Weight -0.0076172 0.0007534 -10.110 0.00000000000000411 ***

## Passengers -1.4792965 0.6909441 -2.141 0.0359 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.012 on 67 degrees of freedom

## Multiple R-squared: 0.7453,Adjusted R-squared: 0.7377

## F-statistic: 98.03 on 2 and 67 DF, p-value: < 0.00000000000000022

Answer: All the results arrived at using the summary() function confirm what
has been found in the preceding exercises: the estimated regression equation is
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ŷ = 53.6446180 − 0.0076172x1 − 1.4792965x2; the coefficient of determination is
r2 = 0.7453; the adjusted-r2 = 0.7377; the F statistic is F = 98.03; and the F
statistic has p-value=0.0000.

18. Use the estimated regression equation and the predict() function to find the pre-
dicted values of MPG.city for the following values: for the first pair Weight=2000

and Passengers=6, for the second pair Weight=3000 and Passengers=5, and the
third pair Weight=4000 and Passengers=4.

# Use data.frame() to create a new object. Name the

# new object newvalues.

newvalues <- data.frame(Weight = c(2000, 3000, 4000),

Passengers = c(6, 5, 4))

# Examine the contents of the object named newvalues

# just to make sure it contains what we think it does.

newvalues

## Weight Passengers

## 1 2000 6

## 2 3000 5

## 3 4000 4

# Use predict() function to provide the predicted values

# of miles per gallon for the new values of Weight and Passengers.

predict(mr1, newvalues)

## 1 2 3

## 29.53449 23.39662 17.25874

Answer: For the first pair Weight=2000 and Passengers=6, the predicted value ŷ is
29.53449 mpg; for the second pair Weight=3000 and Passengers=5, the predicted
value ŷ is 23.39662; and for the third pair Weight=4000 and Passengers=4, the
predicted value ŷ is 17.25874 mpg.

19. What are the predicted values of MPG.city that were used to calibrate the estimated
regression equation ŷ = 53.6446180 − 0.0076172x1 − 1.4792965x2? Import those
predicted values into an object named mileage predicted and list the first and
last three elements.
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# Use fitted(mr1) function to create the predicted

# values of the dependent variable. Import those values into

# the object named mileage_predicted.

mileage_predicted <- fitted(mr1)

# Use the head(,3) and tail(,3) functions to list the

# first and final three values of predicted values.

head(mileage_predicted, 3)

## 1 2 3

## 25.64368 19.13100 20.54018

tail(mileage_predicted, 3)

## 90 92 93

## 23.51088 23.51088 21.53041

20. Merge the mileage predicted object (created in the preceding exercise) with E13 3,
and name the resulting object E13 4. List the elements of E13 4. Find the correla-
tion of the actual and predicted variables; that is, the correlation of MPG.city and
mileage predicted. Once you have the correlation, square it (i.e., raise it to the
second power). Comment on the square of the correlation. What is it?

# Use the cbind() function to bind the column

# mileage_predicted to E13_3. Name the new object E13_4.

E13_4 <- cbind(E13_3, mileage_predicted)

# List all elements of E13_4.

E13_4

## MPG.city Weight Passengers mileage_predicted

## 1 25 2705 5 25.64368

## 2 18 3560 5 19.13100

## 3 20 3375 5 20.54018

## 4 19 3405 6 18.83237

## 5 22 3640 4 20.00092

## 6 22 2880 6 22.83138

## 7 19 3470 6 18.33725

## 8 16 4105 6 13.50035

## 9 19 3495 5 19.62612
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## 10 16 3620 6 17.19467

## 11 16 3935 5 16.27456

## 12 25 2490 5 27.28138

## 13 25 2785 5 25.03431

## 15 21 3195 6 20.43197

## 18 17 3910 6 14.98569

## 20 20 3515 6 17.99448

## 21 23 3085 6 21.26986

## 22 20 3570 6 17.57553

## 23 29 2270 5 28.95715

## 24 23 2670 5 25.91029

## 25 22 2970 6 22.14584

## 27 21 3080 6 21.30795

## 29 29 2295 5 28.76672

## 30 20 3490 6 18.18491

## 31 31 1845 4 33.67375

## 32 23 2530 5 26.97669

## 33 22 2690 5 25.75794

## 37 21 3325 5 20.92104

## 38 18 3950 6 14.68101

## 39 46 1695 4 34.81632

## 42 42 2350 4 29.82708

## 43 24 3040 4 24.57123

## 44 29 2345 5 28.38587

## 45 22 2620 5 26.29114

## 47 20 2885 5 24.27259

## 48 17 4000 5 15.77945

## 49 18 3510 5 19.51186

## 50 18 3515 4 20.95307

## 51 17 3695 6 16.62339

## 52 18 4055 6 13.88120

## 53 29 2325 4 30.01751

## 54 28 2440 5 27.66223

## 55 26 2970 5 23.62513

## 58 20 2920 5 24.00599

## 59 19 3525 5 19.39760

## 61 19 3610 5 18.75014

## 62 29 2295 5 28.76672

## 63 18 3730 5 17.83608

## 64 29 2545 5 26.86243

## 65 24 3050 5 23.01576

## 67 21 3200 5 21.87318

## 68 24 2910 5 24.08216

## 69 23 2890 5 24.23451

## 71 19 3470 6 18.33725

## 73 31 2350 4 29.82708

## 74 23 2575 5 26.63392

## 76 19 3450 5 19.96889
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## 77 19 3495 6 18.14682

## 78 20 2775 5 25.11048

## 79 28 2495 5 27.24329

## 80 33 2045 4 32.15031

## 81 25 2490 5 27.28138

## 82 23 3085 5 22.74916

## 83 39 1965 4 32.75969

## 84 32 2055 5 30.59485

## 86 22 3030 5 23.16810

## 88 25 2240 4 30.66497

## 90 21 2985 5 23.51088

## 92 21 2985 5 23.51088

## 93 20 3245 5 21.53041

# Find the correlation of the actual and predicted

# dependent variables. Store the result in an object named r.

r <- cor(E13_4$MPG.city, mileage_predicted)

# Examine the contents of r.

r

## [1] 0.8633086

# Square the value of r.

r^2

## [1] 0.7453017

The square of the correlation of the actual dependent variable and predicted depen-
dent variable equals the coefficient of determination, r2.

21. Consider the estimated regression equation: ŷ = 3536 + 1183x1 − 1208x2. Suppose
the model is changed to reflect the deletion of x2 and the resulting estimated simple
linear equation becomes ŷ = −10663 + 1386x1.

(a) How should we interpret the meaning of the coefficient on x1 in the estimated
simple linear regression equation ŷ = −10663 + 1386x1?

A 1 unit change in the independent variable x1 is associated with an expected
change of 1386 units in the dependent variable ŷ.
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(b) How should we interpret the meaning of the coefficient on x1 in the estimated
multiple regression equation ŷ = 3536 + 1183x1 − 1208x2?

A 1 unit change in the independent variable x1 is associated with an expected
change of 1183 in the dependent variable ŷ if the other independent variable
x2 is held constant.

(c) Is there any evidence of multicollinearity? What might that evidence be?

There is some multicollinearity between x1 and x2 because the coefficient has
changed from 1386 to 1183 with the introduction of x2 into the regression
model. In the case when the independent variables are perfectly uncorrelated,
the coefficient will be unchanged.

22. Interpret the results below and answer the following questions. Suppose we regress
the dependent variable y on four independent variables x1, x2, x3, and x4. After
running the regression on n = 16 observations, we have the following information:
SSreg = 946.181 and SSres = 49.773.

(a) What is the r2?

Answer: 0.95

Since SSy = SSreg + SSres = 946.181 + 49.773 = 995.954, we know that

r2 =
SSreg

SSy

=
946.181

995.954
= 0.95

(b) What is the adjusted−r2

Answer: 0.932

adjusted− r2 = r2− k(1− r2)
(n− k − 1)

= 0.95− 4(1− 0.95)

(16− 4− 1)
= 0.95− 0.018 = 0.932

(c) What is the F statistic?

Answer: F = 52.277

F =
SSreg/k

SSres/(n− k − 1)
=

946.181/4

49.773/11
=

236.55

4.52
= 52.277

(d) What is the p-value?

Answer: p-value=0.0000

= p(F > 52.277, 4, 11) = 0.0000
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pf(52.277, 4, 11, lower.tail = FALSE)

## [1] 0.0000004338219

(e) Is the overall regression model significant? Test at α = 0.05 level of significance.

Yes, since p-value= 0.0000 < α = 0.05, we conclude that the estimated regres-
sion model is significant.

23. Referring to the previous exercise, suppose we also have the following information
about the partial regression coefficients.

Independent Variables Coefficients bi Standard Error sbi
x1 b1 = −0.0008155 sb1 = 0.003
x2 b2 = −2.48400 sb2 = 0.960
x3 b3 = 0.05901 sb3 = 0.015
x4 b4 = 0.06928 sb4 = 0.038

(a) Is b1 significant at α = 0.05? What is its t value? What is its p-value?

Since t = −0.2718 and p-value= 0.7908 > α = 0.05, b1 is not significant.

t =
b1
sb1

=
−0.0008155

0.003
= −0.2718

2 * pt(-0.2718, 11)

## [1] 0.7908094

(b) Is b2 significant at α = 0.05? What is its t value? What is its p-value?

Since t = −2.5875 and p-value= 0.02525 < α = 0.05, b2 is significant.

t =
b2
sb2

=
−2.48400

0.960
= −2.5875

2 * pt(-2.5875, 11)

## [1] 0.0252505

(c) Is b3 significant at α = 0.05? What is its t value? What is its p-value?

Since t = 3.9340 and p-value= 0.002336 < α = 0.05, b3 is significant.

t =
b3
sb3

=
0.05901

0.015
= 3.9340
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2 * pt(3.9340, 11, lower.tail = FALSE)

## [1] 0.002335972

(d) Is b4 significant at α = 0.05? What is its t value? What is its p-value?

Since t = 1.8232 and p-value= 0.09554 > α = 0.05, b4 is not significant.

t =
b4
sb4

=
0.06928

0.038
= 1.8232

2 * pt(1.8232, 11, lower.tail = FALSE)

## [1] 0.09553817

24. Consider the following estimated multiple regression equation:

ŷ = −0.59141 + 0.05800x1 + 0.84490x2 + 0.11419x3

(a) Complete the missing entries in this ANOVA table.

Source SS df MS F p-value

Regression 21.83373
Residual

Total 23.9 9

The answers to part (a) are the bolded numbers in the following table.

Source SS df MS F p-value

Regression 21.83373 3 7.2779 21.1331 0.001367
Residual 2.0663 6 0.3444

Total 23.9 9

pf(21.1331, 3, 6, lower.tail = FALSE)

## [1] 0.001366979

(b) Complete the missing entries in this coefficients table.

Predictor Estimates Standard Error t p-value

b0 -0.59141 1.03092
b1 0.01082 5.362
b2 0.84490 3.439
b3 0.13877 0.823
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The answers to part (b) are the bolded numbers in the following table.

Predictor Estimates Standard Error t p-value

b0 -0.59141 1.03092 -0.5737 0.587
b1 0.0580 0.01082 5.362 0.001725
b2 0.84490 0.2457 3.439 0.01382
b3 0.1142 0.13877 0.823 0.442

# p-value for bo

2 * pt(-0.5737, 6)

## [1] 0.5870154

# p-value for b1

2 * pt(5.362, 6, lower.tail = FALSE)

## [1] 0.001724838

# p-value for b2

2 * pt(3.439, 6, lower.tail = FALSE)

## [1] 0.01381786

# p-value for b3

2 * pt(0.823, 6, lower.tail = FALSE)

## [1] 0.4419823

(c) What is the value of r2?
Answer: 0.914

r2 =
SSreg

SSy

=
21.83373

23.9
= 0.914

(d) What is the adjusted-r2?
Answer: 0.871

adjusted−r2 = r2− k(1− r2)
(n− k − 1)

= 0.914−3(1− 0.914)

(10− 3− 1)
= 0.914−0.043 = 0.871

25. This exercise uses the mtcars data set that is included in the basic R installation.

(a) Use the pairs() function to create a scatterplot for 3 variables: mpg, cyl, and
wt. What can we say about the relationships between these variables?
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Answer: We can apply the pairs() function to a subset of mtcars which
contains only variables mpg (column 1), cyl (column 2), and wt (column 6).
We use the tail() function to identify the column position of each variable.

tail(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear carb

## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2

## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2

## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4

## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6

## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8

## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2

pairs(mtcars[, c(1, 2, 6)], pch = 19, lower.panel = NULL)
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From the scatterplot, it is clear that mpg is negatively related to cyl and wt

and that cyl is positively related to wt.

(b) Regress the dependent variable mpg on the variables cyl and wt. Write out the
estimated regression equation.
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reg_eq_mileage <- lm(mpg ~ cyl + wt, data = mtcars)

reg_eq_mileage

##

## Call:

## lm(formula = mpg ~ cyl + wt, data = mtcars)

##

## Coefficients:

## (Intercept) cyl wt

## 39.686 -1.508 -3.191

The estimated regression equation: ŷ = 39.69− 1.51x1− 3.19x2, where ŷ is the
predicted value of mpg, x1 is cyl, and x2 is wt. That the partial regression co-
efficients have a negative sign is unsurprising in view of the scatterplots above.

(c) Use the fitted function to create the predicted dependent variables for the
values of cyl and wt in the original data set. Just to check that the predictions
are correct, select two observations and work out the predicted value manually.

predicted <- fitted(reg_eq_mileage)

tail(predicted, 2)

## Maserati Bora Volvo 142E

## 16.23213 24.78418

From part (a), we see that for the Maserati Bora, cyl = 8 and wt = 3.57.
Plugging these values into the estimated regression equation, we find that
ŷ = 39.69 − 1.51x1 − 3.19x2 = 39.69 − 1.51(8) − 3.19(3.57) = 16.23. For the
Volvo 142E, cyl = 4 and wt = 2.78, ŷ = 39.69−1.51(4)−3.19(2.78) = 24.78.

(d) Use the predict() function to create the predicted dependent variable for the
following pairs of values of the independent variables: for the first pair cyl=4

and wt=5; for the second pair cyl=8 and wt=2

newvalues <- data.frame(cyl = c(4, 8), wt = c(5, 2))

predict(reg_eq_mileage, newvalues)

## 1 2

## 17.70022 21.24196

To check these predicted values, we simply plug (a) cyl = 4 and wt = 5 and
(b) cyl = 8 and wt = 2 into ŷ = 39.69−1.51x1−3.19x2 and find ŷ in each case:
ŷ = 39.69−1.51(4)−3.19(5) = 17.70 and ŷ = 39.69−1.51(8)−3.19(2) = 21.24.
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