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Many statistical procedures used in educational research are described as 
requiring that dependent variables follow a normal distribution, implying 
an interval scale of measurement. Despite the desirability of interval scales, 
many dependent variables possess an ordinal scale of measurement in which 
the differences among values composing the scale are unequal in terms of 
what is being measured, permitting only a rank ordering of scores. This 
means that data possessing an ordinal scale will not satisfy the assumption 
of normality needed in many statistical procedures and may produce biased 
statistical results that threaten the validity of inferences. This article shows 
how the measurement technique known as item response theory can be used 
to rescale ordinal data to an interval scale. The authors provide examples 
of rescaling using student performance data and argue that educational 
researchers should routinely consider rescaling ordinal data using item 
response theory. 

Many statistical procedures used in educational research are described as requir­
ing that dependent variables be normally distributed, which implies that these vari­
ables possess an interval scale of measurement. The advantage of an interval scale 
is that relative differences among values composing the scale are assumed to be 
equal in terms of what is being measured, allowing arithmetic operations (e.g., 
addition, multiplication) to be used unambiguously. For example, suppose that 
scores on a 30-item test were computed by summing the number of items answered 
correctly, where higher scores are intended to reflect greater proficiency. If the 
test score variable possesses an interval scale, then the difference in proficiency 
reflected in scores of 10 and 15 is exactly the same as the difference in proficiency 
reflected in scores of 15 and 20. 

Despite the desirability of interval-scaled variables, we share the view of Clogg 
and Shihadeh (1994, p. 140) that “perhaps most of the variables specified as depen­
dent variables in social research are of this general kind [ordinal].” In an ordinal scale, 
the relative differences among values composing the scale are unequal in terms of 
what is being measured, permitting only a rank ordering of scores. For example, a 
Likert scale in which parents respond to a question about their support for current 
school attendance policy by marking “1 = none,” “2 = weak,” “3 = moderate,” or 
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“4 = strong” reflects a rank ordering and is probably an ordinal scale because the dif­
ference between 1 and 2 (one unit) probably does not, in terms of intensity of parental 
support, equal the one-unit difference between 2 and 3. Detailed descriptions of ordi­
nal and interval scales can be found in Siegel (1956), Stevens (1951), and Zumbo 
and Zimmerman (2000). 

Some readers may quarrel with our characterization of ordinal and interval 
scales, but we suspect that few would quarrel with our preference for interval-scaled 
variables over those showing an ordinal scale. Our interest in this topic stems from 
our perception that educational researchers frequently employ ordinal-scaled depen­
dent variables in statistical procedures that assume that these variables possess an 
interval scale of measurement. 

Measurement Scales and Statistical Procedures 

Concerns over ordinal data are not new and have been the subject of consider­
able debate in the methodological literature, much of it centered on the work of 
Stevens (1946, 1951, 1968, 1971). Stevens (1946) described four scales of mea­
surement for variables—nominal, ordinal, interval, and ratio—that are familiar to 
most educational researchers. This hierarchy links the scale of a variable with the 
kinds of statistical analyses that can be performed and is based on the idea of per­
missible and impermissible scale transformations. Following Stevens, a scale 
transformation is an arithmetic operation that transforms or rescales the original 
data. For example, suppose that a constant, say, 20, was added to each Yi score 
using the expression Y*i = Yi + 20. This represents a linear transformation because 
the rescaling factor (20) is raised to a power of one. On the other hand, taking the 
logarithm of each score using the expression Y*i = log(Yi) represents a monotonic 
transformation because rank order is preserved; that is, the examinee with the 
largest Yi also has the largest Y*i , the examinee with the second largest Yi also has 
the second largest Y*i , and so on. 

According to Stevens, permissible transformations for ordinal data are those that 
are monotonic; thus, for example, log and linear transformations are permissible. For 
an interval scale, permissible transformations are those that preserve relative differ­
ences. Since linear transformations preserve relative differences, they are permissible 
and can safely be performed on interval data. On the other hand, log transformations 
do not preserve relative differences and are inappropriate for interval-scaled data. 

As an example, consider the results reported by Resnick and Harwell (1998) for 
the New Standards reference exams (New Standards, 1997), in which examinees 
receive one of five grades for each of four English language arts clusters. Assign­
ment of a grade to each examinee for each standards cluster was based on exam­
inees’ responses to dichotomously scored and constructed-response items. The 
possible grades for each cluster were as follows: achieved the standard with 
honors = 5, achieved the standard = 4, nearly achieved the standard = 3, below the 
standard = 2, and little evidence of achievement = 1. These values were then 
summed to produce an overall English proficiency score for each examinee with a 
possible score range of 4 to 20. These values are similar to those in many educa­
tional research studies, for example, Grolnick, Benjet, Kurowski, and Apostoleris 
(1997), and clearly represent ordinal data. 

To relate scores on this variable to Stevens’s scales of measurement, suppose 
that the New Standards English proficiency scores for three examinees were 
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Y1 = 6, Y2 = 12, and Y3 = 18, producing a rank ordering of Y1 < Y2 < Y3. Suppose 
also that a log transformation was performed on these scores, producing 2.079, 
2.773, and 2.890, respectively. If Y possesses an ordinal scale, this transformation 
is permissible (following Stevens) because rank order is maintained, that is, log 
(Y1) < log (Y2) < log (Y3); if Y is interval scaled, the log-transformed values 2.079, 
2.773, and 2.890 no longer permit an inference of relative differences (i.e., differ­
ences among the log-transformed values are not equal along the log scale and the 
transformation is inappropriate). Stevens’s scale typology implies that the opera­
tions of addition, subtraction, and multiplication can be performed for ordinal data 
because the rank order of the rescaled scores is preserved. 

Stevens (1951) then coupled statistical procedures with measurement scales, 
which amounted to prescribing the use of certain statistical procedures with cer­
tain scales of measurement. According to Stevens, statistics that can be computed 
for ordinal data are those whose meanings are preserved when linear or monoto-
nic transformations are applied to the data; only statistics whose meaning is 
unchanged when a linear transformation is applied are legitimate for interval-
scaled data. Following this prescription, statistical procedures such as t tests and 
F tests should be used only for interval-scaled data; ordinal data are appropriately 
analyzed with procedures that require rank-order information, such as nonpara-
metric statistical procedures. Taken literally, Stevens’s prescription implies that 
the data analyses in many published studies that employ ordinally scaled depen­
dent variables are inappropriate. 

Stevens’s coupling of measurement scales and statistical procedures provoked 
a firestorm among researchers in a variety of disciplines (see, e.g., Anderson, 1961; 
Baker, Hardyck, & Petrinovich, 1966; Borgatta & Bohrnstedt, 1980; Gaito, 1980; 
Gregoire & Driver, 1987; Hand, 1996; Labovitz, 1970; Michell, 1986; Townsend 
& Ashby, 1984; Zumbo & Zimmerman, 1993, 2000) and has been quite influential. 
For example, Stevens’s prescriptions appear in numerous introductory statistics 
texts and published journal articles, as well as computer programs designed to assist 
researchers in choosing appropriate statistical analyses (Velleman & Wilkinson, 
1993). Stevens’s coupling of data analyses and the scale of measurement of a vari­
able has garnered strong support among many researchers (Luce, Krantz, Suppes, & 
Tversky, 1990; Narens & Luce, 1986; Townsend & Ashby, 1984), and good sum­
maries of Stevens’s position appear in Townsend and Ashby (1984) and Maxwell 
and Delaney (1985). 

Opponents of Stevens’s position have argued that such prescriptions are unre­
alistic and that statistical techniques should not be held hostage to measurement 
scales because there is no requirement underlying these procedures that ties them 
to such scales. These authors point out that research literatures contain numerous 
examples in which something valuable was learned from data analyses that ignored 
Stevens’s scale prescriptions (e.g., F test of means performed on ordinal data). 

Along the same lines, Lord (1953) wrote a scathing criticism of scale prescrip­
tions that argued that what counts is the meaningfulness of a statistical analysis, 
which depends on the questions the analysis is trying to answer. Tukey (1961) 
offered similar criticisms of scale prescriptions. Velleman and Wilkinson (1993) 
argued that scale type is rarely fixed but, rather, depends on the questions being 
asked or the introduction of new information. They used the example of the num­
ber of cylinders in a car engine to point out that the scale of this variable could be 

107 



Harwell and Gatti 

treated as nominal for questions involving miles per gallon and as interval for ques­
tions involving the average number of cylinders in U.S.-produced cars. Velleman 
and Wilkinson also reiterated one of the most potent criticisms of Stevens’s pre­
scriptions: They preclude the use of monotonic data transformations (log, square 
root) with interval-scaled data even though such transformations often increase the 
extent to which underlying statistical assumptions are satisfied by making distrib­
utions less skewed, variances more nearly equal, and so forth. 

One of the more interesting techniques for ordinal data was described by Gautam, 
Kimeldorf, and Sampson (1996), who illustrated a transformation that produces the 
smallest and largest possible F tests for means for any assignment of values to an 
ordinal scale. These authors pointed out that the usual assignment of integer values 
to an ordinal scale (e.g., 1, 2, 3, etc.) is only one of many possibilities and that the 
assignment of other values can affect statistical tests. For example, it is possible that 
the values for a 5-point Likert-type scale that produce the largest statistical test are 
not 1, 2, 3, 4, and 5 but another collection such as 0, 0.23, 0.46, 0.90, and 1. Gautam 
et al. showed that if the minimum and maximum possible F tests, determined by 
examining sets of scale values, in a one-way fixed-effects analysis of variance 
(ANOVA) were both statistically significant, then one can conclude that evi­
dence supporting the presence of a treatment effect exists and does not depend 
on the choice of ordinal scale values. The use of the F test in the Gautam et al. 
method would be inappropriate under Stevens’s prescriptions, however. 

Cogent summaries of arguments against Stevens’s prescriptions appear in Gaito 
(1980), Zumbo and Zimmerman (1993, 2000), Borgatta and Bohrnstedt (1980), 
and Velleman and Wilkinson (1993). Still other writers have attempted to describe 
differences between those who support and those who are opposed to Stevens’s 
prescriptions, finding strengths and weaknesses in both positions (Hand, 1996; 
Michell, 1986). Given the concerns with using ordinal data, it seems natural to ask 
how frequently ordinal data are used in educational research. 

How Frequently Are Ordinal-Scaled Dependent Variables 
Used in Statistical Procedures Requiring Interval-Scaled 

Data in Educational Research? 

We expected the percentage of ordinally scaled dependent variables in educa­
tional research to be high because our experience with the research of colleagues 
and students suggests that (a) dependent variables are often constructed to meet the 
needs of the research, and these variables are likely to possess an ordinal scale, and 
(b) when existing tests, questionnaires, and so forth are used, the scale of the result­
ing data is typically ordinal. 

Many readers may be able to cite their own experiences in which statistical 
analyses usually described as requiring interval-scaled data were performed with 
dependent variables possessing an ordinal scale. Still, we attempted to estimate the 
prevalence of this practice by surveying three prominent educational research jour­
nals: American Educational Research Journal, Sociology of Education, and Jour­
nal of Educational Psychology. While not definitive, we believe that the empirical 
studies appearing in these journals are probably representative of a large class of 
quantitative research studies in education. 

We classified a dependent variable in these studies as possessing an ordinal 

scale if there was evidence that the scores did not possess the property of equal rel-
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ative differences but could be rank ordered. For example, Grolnick et al. (1997) 
studied predictors of parent involvement in children’s schooling using a variety of 
dependent variables constructed for their study. Among these variables were mea­
sures of school involvement based on responses to five items using Likert scales 
with three, four, and five ordered-response categories. Grolnick et al. offered no 
evidence to support their treatment of these data as possessing an interval scale, 
and it seems unlikely that relative differences were equal (e.g., that the difference 
between scores of 3 and 6 reflected the same level of parent involvement as the 
difference between scores of 12 and 15). 

On the other hand, a study by Rowan, Chiang, and Miller (1997) relied on esti­
mates of students’ mathematics proficiency obtained using a measurement tech­
nique known as item response theory (IRT). Under some conditions described 
later, IRT produces interval-scaled data, which means that relative differences of 
estimates of proficiency should be constant across the scale. Thus, the relative dif­
ference between examinees with proficiency estimates of, say, 0.5 and 1 (standard 
deviations) should reflect the same difference in mathematics proficiency as that 
between examinees with scores of 1.5 and 2 standard deviations. 

In surveying the published articles in these three journals during the period 
1993–1997, we were surprised that more than 85% of the studies reporting empir­
ical results used hierarchical linear modeling (HLM) or structural equation mod­
eling (SEM), although ANOVA-based procedures were also used. Overall, more 
than 100 studies published in these journals between 1993 and 1997 used statisti­
cal analyses usually described as requiring interval-scaled data. We felt that 100 
studies was unmanageable and decided to limit the survey to articles published in 
1997. Of the studies surveyed in 1997, HLM and SEM were again the most com­
monly used statistical techniques, followed by ANOVA-based procedures. 

The American Educational Research Journal published 14 papers in 1997 in 
which statistical tests that required a formal assumption of normality were reported, 
usually with more than one dependent variable being analyzed. Of a total of 166 
dependent variables, we judged that 88% showed an ordinal scale. Similarly, in 1997 
Sociology of Education published 18 papers reporting results based on statistical tests 
requiring a normality assumption, with 56% of the 71 dependent variables appear­
ing to show an ordinal scale; for the Journal of Educational Psychology, 70 papers 
and 71% of the 471 dependent variables showed an ordinal scale. 

Overall, 73% of the dependent variables used in the articles published in these 
three journals in 1997 appeared to be measured using an ordinal scale. All of the 
dependent variables categorized as ordinal in these studies used Likert scales, and 
many were constructed to meet the needs of the particular study. Although there is 
room for disagreement about whether a specific variable in the articles surveyed 
was measured using an ordinal or interval scale, we believe that the overwhelming 
majority of these variables would be judged to represent ordinal scales of mea­
surement regardless of whether liberal or conservative definitions are applied. 

The fact that so many of the dependent variables showed an ordinal scale but 
were treated as interval suggests that a case can be made that educational researchers 
regularly employ ordinal-scaled dependent variables in analyses typically described 
as requiring these variables to be interval scaled. This practice can lead to problems 
in many statistical procedures. Before describing some of these problems, we dis­
tinguish between manifest and latent variables. 
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Manifest and Latent Variables 

A manifest variable (Y) is a measured (observed) variable, whereas a latent vari­
able (θ) cannot be measured directly and is typically assumed to be interval scaled 
(Borgatta & Bohrnstedt, 1980). For example, parental support for a current school 
attendance policy could be conceptualized as an interval-scaled latent variable 
ranging from strong to weak support, and the ordinal 1 to 4 scale described earlier 
could serve as a manifest variable that provides information about the latent vari­
able. Similarly, the parental involvement variable of Grolnick et al. (1997) could 
be conceptualized as an interval-scaled latent variable. According to measurement 
theory, θ shows no measurement error and is completely reliable (Lord & Novick, 
1968, pp. 27-28). In settings in which θ and Y are distinguished, examinees’ 
observed scores Yi (i = 1,2,... ,N) are treated as indicators of their true status or 
proficiency θi. 

The distinction between manifest and latent variables allows ordinal and inter­
val scales to be further delineated. Suppose that θ represents the latent variable 
English language arts proficiency and Y the manifest variable of total proficiency 
score. To relate the two, it is necessary to specify some statistical function linking 
θ and Y, say, f(Y θ), where Y θ indicates that the manifest data depend on θ. As 
Maxwell and Delaney (1985) show, if f(Y θ) relates θ and Y in a linear manner, 
so that unit changes (relative differences) in Y reflect unit changes in θ, then Y is 
interval scaled. On the other hand, if θ and Y are monotonically related through 
f(Y θ), then unit changes in Y do not reflect unit changes in θ and Y has an ordi­
nal scale. This implies that if θ and Y are both interval scaled, then a monotonic 
transformation (rescaling) of the manifest data will destroy the link between the 
two. On the other hand, if θ possesses an interval scale but Y possesses an ordinal 
scale, a monotonic transformation of the manifest data would not destroy the link 
between the two because rank ordering would be maintained. If θ is ordinal, Y can 
never be rescaled to interval data; if θ is interval, however, it may be possible to 
transform an ordinal Y such that the rescaled scores possess an interval scale. 

The distinction between manifest and latent variables also allows us to comment 
on how our presentation relates to that of Davison and Sharmu (1988, 1990, 1994). 
These authors consider the case of an ordinal (manifest) Y and an interval-scaled 
(latent) θ when testing statistical hypotheses associated with procedures such as 
ANOVA, analysis of covariance, and multiple regression. The Davison and Sharmu 
framework results in two statistical null hypotheses associated with a statistical test, 
one for Y and one for θ. These authors describe conditions under which statistical 
null hypotheses are or are not corrupted when θ is interval scaled but Y is ordinal. 

For example, for a one-way, fixed-effects ANOVA with Jgroups, the underlying 
linear statistical model is 

Yij = µy + τj + eij, 1 

where Yij is the observed score of the ith subject in the jth group, µy is a grand pop­
ulation mean, τj represents a treatment effect defined as µj - µy where µj is the mean 
of the jth population, and eij represents an error term (Kirk, 1995, p. 32). The 
assumptions for the associated F test to be valid are that the Yij in the population 
are independent, are normally distributed, and show a common variance. 
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In the Davison and Sharmu approach, it is necessary to specify separate statis­
tical null hypotheses for Y [H0: µ 1(Y) = µ2(Y) = . . . = µ J(Y )] and θ [H0: µ1(θ) = 
µ2(θ) . . . = µJ(θ)] and to then decide whether inferences based on an ordinal Y 
apply to an interval-scaled θ. One problem with the Davison and Sharmu approach 
is that it involves testing a statistical null hypothesis containing parameters [µJ(θ)] 
based on θ when θ does not appear in the underlying statistical model. This unde­
sirable practice is similar to what Marascuilo and Levin (1970) called a Type IV 
error. Researchers are prone to Type IV errors when they make inferences about 
parameters that do not appear in the statistical model assumed to underlie the data. 
Another problem is that the criteria used by Davison and Sharmu to determine 
whether inferences for Y apply to θ are not available for many statistical proce­
dures, such as multivariate analysis of variance and HLM. A third problem is that 
these criteria are rather complex to apply. 

Our preference is to rescale the ordinal Yvalues in the sample to an interval mea­
sure prior to statistical estimation and hypothesis testing. (We assume that the pop­
ulation distribution of Y values would also be [hypothetically] rescaled to an interval 
measure.) This means that, for hypothesis-testing purposes, θ does not exist or Y 
θ because Yis assumed to be measured without error. For a one-way ANOVA, this 
results in a single statistical null hypothesis of equal population means for Y that is 
consistent with the parameters in Equation 1 [H0: µ 1(Y) = µ2(Y) = . . . = VJ(Y)]. The 
presence of a single statistical null hypothesis containing parameters appearing in 
the statistical model assumed to underlie the data also means that Type IV errors of 
the kind associated with the Davison and Sharmu approach are avoided. 

Another advantage of rescaling is that it is not tied to any particular statistical 
analysis and may even be useful in statistical procedures in which θ is explicitly 
modeled (i.e., Y is assumed to be measured with error), such as SEM models with 
latent variables. Finally, although rescaling procedures have their share of com­
plexities, we believe that they are no more difficult to use than the Davison and 
Sharmu criteria, and they are probably easier. 

Problems With Ordinal Data in Many Statistical Procedures 
Many of the statistical procedures favored by educational researchers (e.g., 

ANOVA, HLM, SEM) have desirable properties if the assumptions underlying 
those procedures are satisfied. These desirable properties typically include esti­
mates of parameters that are unbiased (i.e., are neither over- or underestimated) 
and statistical tests that reject a true or false statistical null hypothesis according to 
what is expected by statistical theory (i.e., Type I error rate and statistical power 
of a test). We consider two problems associated with the use of ordinal data that 
can compromise these properties. 

Nonnormality 
One problem with ordinal data in many statistical procedures is that these values 

cannot be assumed to be normally distributed, since this requires interval-scaled 
(continuous) data. Although some writers have argued that equating normal distri­
butions with interval scales is inappropriate (e.g., Stine, 1989), we subscribe to the 
view of Guilford (1954, p. 17), Gaito (1959), Lord and Novick (1968, p. 22), and 
others that a normally distributed variable possesses at least an interval scale of mea­
surement. This means that the population distribution of the 5-point Likert-type 
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variable used in Grolnick et al. (1997) would have only five values and could not 
possibly be normally distributed. 

Using ordinal data with statistical procedures requiring normality may produce 
parameter estimates that are biased and tests that fail to reject a statistical null 
hypothesis according to what is expected by statistical theory. For example, the use 
of ordinal data can lead to serious problems when one is estimating and testing vari­
ances and/or covariances or correlations. Bollen and Barb (1981) showed that esti­
mates of the Pearson correlation coefficient were biased when computed for ordinal 
data, which implies that a test of the statistical null hypothesis H0: ρxy = 0, where ρxy 
represents the population Pearson correlation coefficient, will reject H0 more or less 
than expected by statistical theory. Martin (1973) and Wylie (1976) reported 
similar findings. Russell, Pinto, and Bobko (1991) showed that using a 5-point 
Likert-type variable as the dependent variable in moderated regression produced 
a substantial loss of statistical power relative to what was expected by statistical 
theory. Embretson (1996) showed that spurious interaction effects can emerge in 
factorial ANOVAs using ordinal Y data. Studies of the effects of using ordinal data 
in SEM when the variables are assumed to be interval scaled have also shown that 
estimation of relationships can be distorted and statistical test results can be mis­
leading (Babakus, Ferguson, & Joreskog, 1987; Boomsa, 1983; Browne, 1984; 
Cobham & Applegate, 1999; Hu, Bentler, & Kano, 1992; Muthen & Kaplan, 1985). 

Other studies have compared the Type I error rate and power of ANOVA-based 
F tests and nonparametric tests for ordinal data. These results generally indicate 
that F tests control Type I error as well as nonparametric tests for (nonnormal) ordi­
nal data (Baker et al., 1966; Hsu, 1968; Nanna & Sawilowsky, 1998; Rasmussen, 
1989), but that they often show less statistical power than their nonparametric com­
petitors (Blair & Higgins, 1985; Nanna & Sawilowsky, 1998; Rasmussen, 1989). 
On the whole, the fact that ordinal data are not continuous and cannot be normally 
distributed creates problems for many statistical procedures. 

Incoherence of the Y and θ Scales 
Another problem is that using parameter estimates based on ordinal data to make 

inferences about an interval-scaled θ can introduce bias because of scale incoher­
ence. The presence of bias means that a statistic overestimates or underestimates a 
parameter. For example, the estimation of the mean of the latent parental involve­
ment variable of Grolnick et al. (1997) by their manifest ordinal data introduces 
more bias than would be present if Y and θ shared an interval scale. The implication 
is that the bias introduced by the incoherence of the Y and θ scales threatens the 
validity of one’s interpretations (see, e.g., Bollen & Barb, 1981; Embretson, 1996). 

One way to handle scale incoherence is to correct the parameter estimates for 
the bias induced using an ordinal Y. Krieg (1999) derived formulas for means, vari­
ances, covariances, correlations, and reliability coefficients that quantify the bias 
that is introduced when manifest and latent variables are on different scales. These 
equations can be used to correct the bias in parameter estimates computed for an 
ordinal Y, which in turn imposes coherence on the Y and θ scales. 

The complexity of the bias computations reduces their attractiveness, however. 
For example, bias equations for the mean and variance require the calculation of 
probabilities that depend on the distribution of θ and the function relating Y and θ, 
f(Y θ). If θ is assumed to be normally distributed, computing the needed probabil-
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ities requires numerically evaluating integrals over a normal probability function. 
Moreover, the bias correction must be applied for each statistic, so data analyses 
involving more parameters and, hence, more statistics require more computational 
labor. This computational labor is greater than it may appear at first glance because 
statistics often of interest in data analyses in educational research, such as partial 
regression coefficients in multiple regression, are computed from other statistics that 
would first have to be corrected for bias. 

We think that rescaling ordinal data offers a simpler way to impose coherence 
on the Y and θ scales. Rescaling an ordinal Y to an interval scale eliminates the bias 
captured by the equations of Krieg (1999), which in turn should allow for more 
meaningful inferences. 

Despite our enthusiasm for rescaling, it is important to point out that these meth­
ods typically introduce error into the rescaled data. This occurs for two reasons. 
First, rescaling methods rely on statistics computed using sample data that contain 
sampling error, which is transmitted to the rescaled values. A second potential 
source of error arises when the assumptions underlying rescaling techniques are not 
satisfied. These problems speak to the importance of using rescaling methods only 
when the error introduced by these techniques is minimal. We revisit this topic when 
IRT models are introduced. 

What Are the Options for Handling Ordinal Data? 
After reviewing the methodological literature, it is clear that educational 

researchers faced with analyzing ordinal data have two options. One is to employ sta­
tistical methods explicitly designed to analyze such data, which include nonpara-
metric procedures (Conover, 1980; Marascuilo & McSweeney, 1977), contingency 
table analysis (Agresti, 1990; Clogg & Shihadeh, 1994), regression models for ordi­
nal data (Clogg & Shihadeh, 1994; McCullagh, 1980), and specialized SEM models 
(Muthen, 1984). 

A second option, mentioned earlier, is to rescale ordinal data to an interval scale 
and then employ standard statistical procedures to analyze the interval data. In our 
view, rescaling is often the most attractive and practical method for handling ordi­
nal data that can resolve the dilemma of coupling measurement scales with statis­
tical analyses. If Y is an ordinally scaled indicator of θ, and θ is interval scaled, 
then rescaling Y to an interval scale may allow the assumption of normality to be 
met. Of course, normality may not hold even for the rescaled data simply because 
the measured variable does not follow a normal distribution. In such cases, it is com­
mon to attempt to find a nonlinear transformation that produces data that are at least 
approximately normally distributed or to turn to statistical procedures not requiring 
normality, such as nonparametric techniques. But a Y variable showing an ordinal 
scale ensures that normality will not be met. Rescaling Y will also impose coherence 
on the Y and θ scales that in turn should enhance the validity of inferences. 

Among the techniques available to rescale data, we believe that IRT is often the 
preferred method. Various rescaling techniques are available, such as multidi­
mensional scaling, but we prefer IRT because it addresses many of the concerns of 
the arguments for and against Stevens’s (1951) position. Under some conditions 
described later, IRT produces interval-scale data, satisfying measurement-based 
arguments. Yet, it does not explicitly link statistical analyses and the measurement 
scales of variables, satisfying many statistically based arguments. 
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The methods of IRT have been available for several years, and some educa­
tional research studies have used dependent variables that resulted from an appli­
cation of IRT (e.g., Lee, Smith, & Croninger, 1997; Rowan et al., 1997). In general, 
though, the use of IRT to rescale data in educational research appears to be rare. 
Our presentation focuses on rescaling dependent variables, but arguments for 
rescaling ordinal independent/predictor variables using IRT follow the same rea­
soning. Next, we briefly describe the classical test theory (CTT) and IRT mea­
surement models. Following the work of Fischer (1995), Embretson (1996), 
Maxwell and Delaney (1985), and others, we describe the conditions under which 
ordinal data can be transformed to an interval scale using IRT methods. 

Classical Test Theory 
Many variables used in educational research are created by adding together item 

responses for a test or instrument (e.g., questionnaire, survey) to produce a total or 
subscale score. This process can be thought of as a way of scaling data whose mea­
surement properties are typically justified by appeals to CTT (Embretson, 1996). 
CTT refers to traditional methods and techniques for test design and analysis, most 
of which have a strong correlational flavor, and is distinguished by the dominant 
role played by a test score and the relatively minor role played by test items and 
their characteristics (Baker, 1992, p. 1). The CTT measurement model dominated 
measurement for decades, and understanding its deficiencies provides a powerful 
argument for considering rescaling ordinal data using IRT. 

The deficiencies of CTT include its inability to produce an interval scale for test 
scores and its failure to take the characteristics of items into account or to provide 
information about the reliability of estimated scores or proficiencies (Embretson, 
1994, 1996; Fischer, 1995; Hambleton & Swaminathan, 1985, pp. 1-14). Summing 
item responses, questionnaire responses, and so forth to create a total or subscale score 
for each examinee produces variables that possess an ordinal scale and that fail to 
reflect key characteristics of items, such as their difficulty. For example, in the 
Grolnick et al. (1997) study of parent involvement in children’s schooling, teachers 
rated behavioral involvement in the school for various activities using a 1 to 5 Likert-
type scale. Total scores were then created by summing responses to the items, giving 
a possible total score range of 5-25, with larger values interpreted as greater parental 
involvement. In addition to possessing an ordinal scale, total scores computed in this 
way weight each item equally and ignore the different characteristics of the items. 

Item Response Theory 
IRT approaches test design and analysis quite differently from CTT. In IRT, the 

items and their characteristics play the dominant role. Although there are several 
well-documented advantages of IRT over CTT (Embretson & Reise, 2000, 
pp. 13-43; Hambleton & Swaminathan, 1985, pp. 1-14), we focus on the ability 
of IRT to generate an interval scale for manifest ordinal data that takes into account 
item characteristics and to provide estimates of the reliability of each examinee’s 
estimated proficiency. 

In IRT, the key role of items and their characteristics appears in the statistical 
model linking examinees’ responses to an item and their “true” proficiency on the 
latent variable, that is, f(Y θ). The characteristics of items are taken into account 
in IRT models through the use of item parameters that capture these properties. 
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Three characteristics of items can be examined. One is item difficulty, which rep­
resents the point on the proficiency scale at which the probability of a correct 
response is one half. Difficulty parameters are typically expressed in standard devi­
ation units and assumed to have a standard-normal distribution with a mean of zero 
and a standard deviation of one. Thus, items of average difficulty have a difficulty 
parameter near zero, those that are more difficult have positive difficulty parameter 
values (e.g., 1.5), and those that are easier have negative difficulty values (e.g.,-1.2). 

A second characteristic is item discrimination, which reflects the ability of an 
item to discriminate among examinees with more or less proficiency. Estimated 
item discrimination parameters typically range between 0.5 and 2, with larger val­
ues indicative of greater discrimination. The third item characteristic that is some­
times examined reflects the extent to which examinees are likely to guess the 
answer to an item correctly. 

Note that IRT is generally used as a measurement model whose focus is exam­
ining how items are performing; however, we use IRT as a scaling model whose 
focus is on transforming observed item or questionnaire responses to an estimated 
score on a latent variable. It is important to emphasize that either application of 
IRT involves the use of relatively complex models with rigorous assumptions of 
their own and that failure to satisfy these assumptions makes using these models 
inadvisable. In the following, we describe some IRT models and their assumptions. 

Steps in Using IRT Models to Rescale Data 
To rescale manifest ordinal data using IRT, it is necessary to perform four steps; 

interval-scaled proficiency estimates appear in Step 3. 

Step 1: Identify an Appropriate IRT Model 
IRT models can be distinguished in several ways. Thissen and Steinberg (1987) 

offered a detailed taxonomy of IRT models, but we rely on two categories to char­
acterize IRT models: the nature of the item responses and the kinds of item param­
eters appearing in the IRT model. The first category consists of (a) nominal item 
responses, which occur when responses are categorical, including the common 
case of dichotomously scored (correct, incorrect) items, and (b) graded responses, 
which involve a rank ordering of responses to an item, such as those obtained using 
raters to score constructed-response items. IRT models can also be distinguished 
by the kinds of parameters used to capture the characteristics of an item. In keeping 
with common practice, we assume that logistic IRT models are used (Embretson & 
Reise, 2000, pp. 66-72). 

The simplest IRT model for responses that have been dichotomously scored is 
the one-parameter Rasch model. This model uses a single difficulty parameter (β k, 
k = 1,2,.. . , K items) for each item and assumes equal discrimination across items 
and no guessing. The Rasch model can be written as 

Pik(Yik = 11 θi) = exp[(θi - βk)]/{1 + exp[(θi - βk)]}, ( ) 

where Pik(Yik = 1 θi) is the probability of an examinee with proficiency θi answer­
ing the kth item correctly and exp represents the exponentiation operator (Fischer, 
1995). Suppose that θ is normally distributed with a mean of zero and standard 
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deviation of one, that β 1 = -0.5 (a slightly easy item), and that θ1 = 1 (above-average 
proficiency). This arrangement of values indicates that the probability that this 
examinee will answer this item correctly should be high. Using the Rasch model in 
Equation 2, the probability is 

P11(Y11 = 11 θ1 = 1) = exp{[1 - (-0.5)]}/{1 + exp[1 - (-0.5)]} (3) 

= exp(1.5)/[1 + exp(1.5)] 

= 4.48/(1 + 4.48) 

= 0.82. 

As expected, it is quite likely that an examinee with this proficiency will answer 
this item correctly. Suppose that β1 was still -0.5 but that θ2 was -1.25, indicating 
an examinee with below-average proficiency. We would expect the probability of 
responding correctly to this item for this examinee to be much lower than 0.82: 

P21(Y21 = 11 θ2 = - 1.25) = exp{[-1.25 - (-0.5)]}/{1 + exp[-1.25 - (-0.5)]} (4) 

= exp(-0.75)[1 + exp(-0.75)] 

= 0.472/1.472 

= 0.32. 

As expected, an examinee with θ2 = -1.25 has a relatively small probability of 
answering this item correctly. Good sources for additional information about the 
Rasch model are Andrich (1988) and Embretson and Reise (2000). 

Two other IRT models are available for dichotomously scored item responses 
in addition to the Rasch model. If the items are expected to differ in difficulty but 
to have similar discriminating power, the Rasch model is preferred; if items are 
also expected to vary in their discriminating power, then a two-parameter model is 
appropriate; settings in which guessing needs to be taken into account require 
a three-parameter model. Choosing among these three models depends on the 
item parameters needed to describe the responses, although to some extent it is 
possible to leave the choice of models to the data since one can compare the mod­
els statistically to determine which (if any) best captures patterns in the item 
responses (Thissen, Steinberg, & Gerard, 1986). Good introductions to the two- and 
three-parameter IRT models for dichotomous responses include Embretson and Reise 
(2000, pp. 65-79), Hambleton and Swaminathan (1985, pp. 33-48), and Harris 
(1989). A variety of IRT models are available for nominal responses with more 
than two categories and for graded-response models (Baker, 1992, pp. 222-287; 
Embretson & Reise, 2000, pp. 95-124). Table 1 provides information about software 
for performing the analyses associated with various IRT models. 

Step 2: Estimate Item Parameters 
Once an IRT model has been selected, it is necessary to fit that model to the data 

for each item, which entails estimating the item parameters. Various estimation 
methods are reviewed in Baker (1987, 1992), and Harwell, Stone, Hsu, and Kirisci 
(1996) review computer programs available to estimate item parameters, includ-
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TABLE 1 
Software for analyzing data for item response theory models 

Computer IRT model and Chi-square fit Residuals 
program nature of data test provided provided 

MULTILOG 1-,2-,3-PAR nominal data Yes (for the test Yes (for the test 
1-,2-PAR graded response as a whole only) as a whole only) 

BILOG 1-,2-,3-PAR dichotomous Yes Yes 
PARSCALE 1-,2-,3-PAR nominal 

1-,2-,3-PAR graded response 
Yes Yes 

RASCAL 1-PAR dichotomous Yes No 
QUEST 1-PAR dichotomous 

1-PAR graded response 
Yes No 

ASCAL 2-,3-PAR dichotomous Yes No 

Note. More information about these programs can be obtained from the vendor at http://  
www.assess.com/softmenu.html. 1-PAR represents a Rasch IRT model with difficulty 
parameters, 2-PAR a two-parameter IRT model with difficulty and discrimination param­
eters, and 3-PAR a three-parameter model with difficulty, discrimination, and guessing 
parameters. 

ing some of those in Table 1. Parameter estimation difficulties are, in general, least 
likely for the one-parameter Rasch model and increasingly likely for more com­
plex IRT models such as the three-parameter model. The use of specialized esti­
mation algorithms, such as those available in the computer program BILOG 
(Mislevy & Bock, 1997), has eased many of these difficulties, and there is evidence 
that item parameters can be reliably estimated for various IRT models and varying 
sample sizes and numbers of items (see, e.g., Drasgow, 1989; Hambleton, Jones, 
& Rogers, 1993; Harwell & Janosky, 1991; Hulin, Lissak, & Drasgow, 1982; Koch, 
1983; Reise & Yu, 1990; Stone, 1992). Still, there are cases in which the use of com­
plex IRT models such as the three-parameter model for dichotomous response or a 
graded-response model may lead to problems in estimating item parameters. Good 
sources to consult for parameter estimation in IRT include Baker (1987, 1992), 
Embretson and Reise (2000), and Hambleton and Swaminathan (1985). 

Step 3: Estimate Proficiency Parameters 
Next, proficiency parameters are estimated for each examinee (θi). Although the 

term proficiency is common in IRT, we remind readers that these models can be 
used to estimate scores for any interval-scaled latent variable; for example, parental 
involvement in children’s schooling. 

The various methods of estimating proficiency parameters that are available in 
the software listed in Table 1 (e.g., maximum likelihood estimation [ MLE], expected 
a posteriori [EAP], maximum a posteriori [MAP]) tend to give similar results as 
long as the number of items/questions exceeds 20. For less than 20 items/questions, 
the EAP method is often recommended (Mislevy & Stocking, 1989), although 
this method, like the others, produces biased estimates. Good sources for ability 
estimation methods in IRT include Baker (1992), Embretson and Reise (2000), 
and Hambleton and Swaminathan (1985). 
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Fischer (1995) showed that assuming that θ is interval scaled and Y is ordinal 
produces estimated proficiencies θi that possess an interval scale if the Rasch IRT 
model is used for dichotomously scored data and adequately captures patterns in the 
data. Thus, using the Rasch model to estimate proficiencies can rescale ordinal data 
to an interval scale. A variation of the Rasch model in Equation 2 has been widely 
used in the psychometric ratings literature in which rating data are transformed to 
an interval scale (Englehard, 1992, 1994, 1996). Proficiency estimates for other IRT 
models, such as the two- and three-parameter models for dichotomous responses, 
have not been shown to possess an interval scale. This represents an important gap 
in the IRT rescaling literature since adequately capturing the response patterns in 
many tests or questionnaires may require the use of more complex IRT models. 

Item response theory also provides evidence of the reliability of estimated pro­
ficiencies through the standard error of each θi. Suppose that θ1 is 1 and that the 
associated standard error is 0.05. These values tell us that this estimated proficiency 
is well above average and is quite reliable because smaller standard errors indicate 
proficiency estimates of greater reliability. If θ1 = 1 but the associated standard 
error is 0.50, then this estimated proficiency is far less reliable. Alternatively, the 
so-called test information function can be used to provide evidence of reliability 
(Baker, 1992, pp. 83–84). 

Step 4: Assess Model-Data Fit 
Finally, the adequacy with which an IRT model captures patterns in item 

responses must be evaluated for each item; if these patterns are adequately captured 
by the IRT model, then estimates of item parameters and estimated proficiencies are 
credible. In the IRT literature, this is referred to as assessing the adequacy of the 
model-data fit. Model-data fit in IRT is usually assessed by examining the chi-square 
goodness-of-fit test produced for each item and by examining the residuals obtained 
in the process of fitting an IRT model to item response data. Inadequate model-data 
fit means that estimated item parameters and proficiencies cannot be credibly inter­
preted and usually leads to modifying and/or deleting some items. Good sources of 
information about model-data fit in IRT include Embretson and Reise (2000, 
pp. 233–238) and Hambleton and Swaminathan (1985, pp. 151–169). 

In sum, the use of the Rasch model in IRT to produce proficiency estimates 
(a) rescales ordinal data to an interval scale that may allow the assumption of nor­
mality associated with many statistical procedures to be satisfied and (b) can elimi­
nate the bias introduced when using an ordinal Y to make inferences about an interval 
θ. An IRT approach also incorporates item characteristics into the estimation of θ 
and provides evidence of the reliability of each examinee’s estimated proficiency. 

Before continuing, we reemphasize that IRT models are not simple “add-ons” 
that can be used without regard for their complexity and underlying assumptions. 
The two key assumptions underlying commonly used IRT models are (a) uni-
dimensionality of proficiency, meaning that a single latent variable accounts for 
variation common to items, and (b) local independence, which means that, con­
trolling for proficiency, item responses are independent of one another (Embret-
son & Reise, 2000, pp. 226–227). Failure to satisfy these assumptions makes 
rescaling data with these models inadvisable. Along the same lines, researchers 
need to select an IRT model that captures the operating characteristics of items, 
because failure to do so will probably lead to inadequate model-data fit, resulting 
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in proficiency estimates that cannot be trusted. In short, researchers need to care­
fully attend to the complexity and assumptions of IRT models before using these 
models to rescale ordinal data. Good introductions to these assumptions can be found 
in Embretson and Reise (2000, pp. 226-233), Goldstein (1980), and Hambleton and 
Swaminathan (1985, pp. 15-31). 

Illustrations of the Use of IRT for Rescaling Ordinal Data 
We illustrate the use of IRT to rescale data with two examples. Our first example 

uses the responses of 1,000 fourth-grade examinees to 30 dichotomously scored items. 
After creating a total-correct score for each examinee, we illustrate the use of the 
Rasch model to show how these data can be rescaled to an interval scale. In a second 
example, we show how to rescale graded-response data using IRT. 

Example 1: Rescaling Dichotomously Scored Data 
The responses of 1,000 fourth-grade examinees to 30 dichotomously scored items 

for the New Standards exams were used to estimate English language proficiency (θ). 
Under CTT, we could sum the number correct to produce a total score for each 
examinee (Y), with a possible range of 0 to 30. Unfortunately, this also produces 
an ordinal scale of measurement and fails to take the characteristics of the items 
into account or to provide information about the reliability of the θi. To overcome 
these problems, we use IRT and follow the four steps described earlier. We describe 
each step in sufficient detail to allow readers to use this methodology for their own 
data via the computer programs in Table 1. 

Step 1 
First, we identified an appropriate IRT model. As is common practice, we 

assumed that each examinee had a true (latent) English language arts proficiency 
θi, that θ followed a normal distribution with a mean of zero and a standard devi­
ation of one, and that the Yi represented manifest values that can be used to esti­
mate θi. Because the responses to the k = 30 items were dichotomously scored and 
we had no reason to believe that the items varied in discrimination or that guess­
ing needed to be modeled, we selected the Rasch model in Equation 2. 

Step 2 
Next, we estimated the 30 β k difficulty parameters using the BILOG for Win­

dows (Mislevy & Bock, 1997) program in Table 1 to fit the model in Equation 2 
to the data for each of the 30 items and to estimate the proficiency parameters. (A 
description of the BILOG commands used to perform the analysis is available upon 
request.) The results of these analyses are summarized in Table 2. For example, for 
Item 1, the estimated difficulty was -2.03, indicating that this item was relatively 
easy. The associated standard error of 0.087 indicates that this estimated difficulty 
is fairly reliable. The fact that almost all of the estimated difficulty parameters are 
negative indicates that this test was fairly easy for these examinees. 

Step 3 
In the third step, we used the BILOG computer program to estimate the θi, 

which are plotted against the Yi in Figure 1. Note that the relationship between the 
Yi and θi is reasonably linear, a pattern often observed with the Rasch model. How-
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TABLE 2 
IRT results for dichotomously scored data 

Item Estimated β k Standard error of β k Chi-square test of fit 

1 -2.03 0.087 15.1* 
2 -0.41 0.056 2.8 
3 -1.83 0.084 20.2* 
4 -0.16 0.054 4.4 
5 0.12 0.055 3.8 
6 -0.99 0.063 5.70 
7 -1.79 0.084 24.6* 
8 -0.42 0.061 27.8* 
9 -0.74 0.057 20.6* 

10 -1.51 0.072 13.8 
11 -0.19 0.054 5.4 
12 0.16 0.053 5.6 
13 -0.58 0.063 12.3 
14 -0.12 0.056 3.5 
15 -1.44 0.074 19.9* 
16 -1.08 0.062 12.5 
17 -1.43 0.071 5.5 
18 -0.60 0.061 10.3 
19 -0.36 0.061 9.2 
20 -0.49 0.061 13.0 
21 -0.58 0.062 18.8* 
22 -1.76 0.080 4.9 
23 -0.31 0.060 14.4* 
24 -0.82 0.059 12.9 
25 -0.03 0.059 5.1 
26 -1.29 0.069 8.5 
27 -1.11 0.069 8.8 
28 -0.12 0.056 10.3 
29 -1.10 0.071 68.6* 
30 -1.03 0.069 46.3* 

Note. Each chi-square test of model-data fit was performed using α = .05. 
α = .05. 

ever, unlike the Yi, the θi possess an interval scale (assuming adequate model-data 
fit) and take varying item difficulties into account. For example, the difference 
between θi of 0.80 and 0.30 (0.50 standard deviations) reflects the same difference 
in English language arts proficiency as the difference between, for example, θi of 
-1.1 and -1.60. The standard errors of the estimated proficiencies are reported in 
Table 3 for 10 examinees. Examinee 1 had an estimated proficiency of 0.4406, 
which is above average. But the associated standard error of 0.2414 indicates that 
this is not a particularly reliable estimate. 

Note that the number of unique θi values equals the number of unique item 
response patterns, not the number of possible scores of Y. For example, a dichoto-
mously scored test consisting of two items has 22 = 4 possible response patterns, that 
is, 00; 01; 10; 11, where 1 is a correct response and 0 an incorrect response. Assum-
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FIGURE 1. Plot of total scores and estimated proficiencies for the Rasch model. 

ing that all four response patterns were present in the data, rescaling would produce 
four unique θ̂ i. For the 30-item, dichotomously scored test of English proficiency, 

ˆ there are 230 = 1,073,741,824 unique θi values possible, although in practice a much 
smaller number of these patterns would be expected to appear in the data (101 were 
present in the English proficiency data). Because the estimation of proficiency uses 
item response patterns and the estimated item parameters, it is possible that exam­
inees with the same total-correct score could have different θ̂ i values. 

TABLE 3 
Estimated proficiencies using the Rasch model and the standard errors for 10 examinees 

Yi Estimated proficiency θi Standard error of θi 

24 0.4406 0.2414 
15 -0.5818 0.3230 
21 -0.0581 0.4418 
17 -0.4538 0.1426 
27 0.9434 0.4726 
21 -0.0581 0.4418 
25 0.5268 0.2928 
11 -1.2898 0.2067 

6 -1.8240 0.4460 
26 0.6848 0.4065 
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Step 4 
In the fourth step, we assessed the fit between the Rasch model and the data for 

each item. Initially, we assessed model-data fit using chi-square tests output by 
BILOG. A nonsignificant chi-square fit test at some chosen level of significance α 
provides evidence of adequate model-data fit, whereas a statistically significant test 
signals that the item needs special attention and may need to be modified or omit­
ted. Several of the chi-square fit tests reported in Table 2 are significant at α = 0.05, 
suggesting that model-data fit for these items is inadequate. 

We also examined the model residuals for each item output by BILOG. These 
residuals are standardized and are assumed to follow a standard-normal distribu­
tion (mean = 0, standard deviation = 1). Residuals are calculated in BILOG by 
assuming that the interval-scaled θ distribution is represented by discrete values in 
the ±4 range. Although some information is lost in this process (e.g., all θi between 
1.47 and 1.89 are grouped together), it greatly simplifies checking of model-data 
fit. Typically, the bulk of any model-data misfit is in the tails of the θ distribution 
(high and low proficiencies), because these proficiencies are the most difficult to 
estimate reliably. Rules of thumb vary, but residuals greater than ±2.5 certainly 
provide evidence of significant misfit. 

As is common practice, we represented the θ distribution in BILOG with 10 val­
ues, meaning that for each item there were 10 residuals. For Item 1, the standard­
ized residuals were -6.297, 0.210, -2.075, 0.763, 0.168, 0.335, 0.880, 0.341, and 
0.098, suggesting adequate model-data fit with the exception of the first residual, 
which reflects a poor fit for very low proficiency. For the second item, the residu­
als were 2.731, 2.419, -2.226, 2.155, -0.655, -0.459, 1.474, -0.130, -0.818, and 
-0.630, suggesting adequate model-data fit with the exception of the first residual, 
again associated with low proficiency. This process was repeated for the remain­
ing items. 

Combining the information from the chi-square model-data fit tests and the 
standardized residuals for each item, 10 of the items showed inadequate fit and 
should be examined for problems in their wording, content, and so forth. It is pos­
sible that the poor fit of some items may be attributable to a failure to model item 
discrimination and/or the likelihood of guessing, and that using more complex IRT 
models may produce better model-data fit. In many cases, researchers may choose 
to delete those items showing inadequate model-data fit and base the estimation of 
proficiency on responses to items showing adequate model-data fit. For illustrative 
purposes, we assume that model-data fit is adequate for each of the 30 items so that 
responses ̂  to all of the items were used to estimate proficiency. 

Once θ is available, it can serve as an interval-scaled dependent variable in 
many statistical analyses. Transforming an ordinal Yto an interval-scaled θ means 
that statistical null hypotheses, parameter estimates, and so forth are all expressed 
on the θ scale. As with any rescaling or data transformation, researchers must be 
able to specify meaningful statistical null hypotheses based on the rescaled scores 
and to interpret the statistical results. Otherwise, it is better not to rescale and to 
employ a statistical procedure that assumes that Y possesses an ordinal scale. 

Example 2: Rescaling Graded-Response Data 
Recall that each examinee received a grade for each of the English language arts 

standards clusters that were scored 1 to 5, which represents an ordinal scale. We 
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use the four IRT steps described earlier to rescale these responses in a way that 
takes item characteristics into account. Psychometric rating models such as those 
described in Englehard (1992, 1994, 1996) could also be used here. 

Step 1 
First, we identified an appropriate IRT model. Because of the ordinal nature of 

the responses, we selected a graded-response model that assumes that the response 
categories show a rank ordering. A detailed description of graded-response mod­
els is beyond the scope of this article, and interested readers are referred to Baker 
(1992, pp. 222-250), Embretson and Reise (2000, pp. 97-119), and Van der Lin­
den and Hambleton (1996). 

One option is to select a Rasch graded-response model (Englehard, 1992, 1994, 
1996; Linacre, 1989) in which only difficulty parameters are estimated. We chose 
Samejima’ s (1969) graded-response model because it allows us to illustrate the use 
of a model that takes into account both the difficulty and discrimination of items. 
Suppose that we have k = 4 items, each rated on a 1 to 5 scale. Samejima’s model 
essentially creates four dichotomous response models for each item. In this setup, 
there are a total of t–1 dichotomous response models (t = total number of response 
categories) and t–1 difficulty parameters [β(t –1)k ] that must be estimated. There is 
also a common discrimination parameter for the dichotomous response models. 
Within each item, this allows us to estimate the difficulty associated with each 
dichotomous response model as well as the item’s discriminating power. 

Although the creation of t–1 dichotomous response models for each item allows 
the β ( t –1) to be estimated, it complicates their interpretation. The difficulty parame­
ters β1 and β ( t –1) reflect the point on the proficiency scale at which the probability 
that the response will appear in the first or last response category is one half; the 
remaining difficulty parameters must be averaged in a particular fashion before the 
usual interpretation of difficulty is appropriate (Baker, 1992, pp. 228-229). 

Step 2 
Next, the item parameters were estimated. Because BILOG does not handle 

graded-response models, we estimated the (t–1)k = 4 × 4 = 16 difficulty parameters 
associated with the four items using the MULTILOG program listed in Table 1 
(Thissen, 1991). (A description of the MULTILOG commands used to perform the 
analysis is available upon request.) The estimated difficulty and discrimination 
parameters and their standard errors are reported in Table 4. For example, Item 1 
shows moderate discrimination (1.38) and is more difficult than the other items. 
Item 3, on the other hand, has little discriminating power (0.52) and, in practice, 
would probably be modified or omitted. 

Step 3 
In the third step, each examinee’s proficiency was estimated. The estimated 

examinee proficiencies and the Yi are plotted in Figure 2. Note that Figure 2 shows 
less similarity in the patterns of total-correct responses and estimated proficiencies 
than was the case for the Rasch model in Figure 1, indicating that the effects of 
rescaling were more pronounced using the graded-response model. Although 54 = 
625 unique response patterns are possible, 29 appeared in the sample, meaning that 
rescaling produced 29 unique θ values. 
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TABLE 4 
Item analysis results for graded-response data 

Item Estimated ω Estimated β( (t-1) 

2 

3 

4 

1.38 (.11) 

1.05 (.12) 

0.52 (.08) 

1.15 (.10) 

-0.19 (.07) 
0.13 (.06) 
0.48 (.08) 
1.84 (.14) 

-2.51 (.25) 
0.94 (.12) 
1.09 (.13) 
1.15 (.13) 

-1.84 (.32) 
0.23 (.16) 
1.98 (.34) 
2.20 (.37) 

-1.53 (.12) 
-0.92 (.09) 
-0.69 (.09) 

1.01 (.11) 

Note. ω represents the discrimination parameter. Values in parentheses are standard errors. 
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FIGURE 2. Plot of total scores and estimated proficiencies for Samejima’s model 
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Step 4 
We examined a test of model-data fit for Samejima’s model as well as model 

residuals for the four items combined because MULTILOG does not output results 
for each item. The overall chi-square test was statistically significant, and an exam­
ination of the residuals for the four items suggested that model-data fit might not 
be adequate (Figure 3) because of the large positive residuals. As before, these 
large residuals signal a need to examine such factors as item wording and content. 

Computer Simulation Study 
Unfortunately, the θ for Samejima’ s graded-response model has not been proven 

to generate an interval scale. In response to the absence of such information, we pe -̂
formed a small computer simulation study to investigate the extent to which the θ 
appeared to possess an interval scale under Samejima’s model. The advantage of 
performing a simulation study is that all factors are under the investigator’s con­
trol; this allowed us to simulate item response data with known characteristics. 

We used the GENIRV (Baker, 1986) computer program to simulate graded-
response data for 1,000 hypothetical examinees who were assumed to have θ val­
ues that followed a normal distribution (mean = 0, variance = 1). We limited the 
range of θ to ±3 standard deviations and simulated data for a test composed of four 
graded-response items with five response categories per item. Ordinal Yi values 
were produced by summing the four scores for each simulated examinee. We chose 
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FIGURE 3. Standardized model residuals for k = 4 items using Samejima’s model 
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this configuration because it matched the New Standards English language arts clus­
ters, but in practice it would be wise to use tests with more items since this should 
produce more reliable proficiency estimates. Our use of simulated data ensured that 
the latent variable θ had an interval scale, that the true proficiency of each simulated 
examinee was known (θi), and that the manifest Yi values possessed an ordinal scale. 

Once the graded-response data had been simulated by GENIRV, they were sub­
mitted to the MULTILOG program to be analyzed under Samejima’s model. This 
produced 16 estimated difficulty parameters, 4 estimated discrimination parameters, 
and 1,000 estimated proficiencies. We then compared each θi, estimated using ordi­
nal data, with the associated true proficiency θi, which possessed an interval scale of 
measurement. If the θi were similar to the θi , there would be evidence supporting the 
use of IRT to rescale ordinal data to an interval scale using Samejima’s model. 

We began by examining the 1,000 differences ( θi - θi), which appear in Figure 4. 
Virtually all of the differences were within ±2 standard deviations of the mean of 
the differences of 0.02 (i.e., were within a range attributable to sampling error). In 
fact, the largest difference was -2.40, and the next largest was -2.03; however, 
most of the differences were relatively close to zero. Thus, the differences in Fig­
ure 4 provide preliminary evidence that Samejima’s IRT model can be used to 
rescale graded-response data to an interval scale. However, substantial additional 
work is needed that examines a more comprehensive set of conditions, such as 
modeling a broader range of θ values. 
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FIGURE 4. Plot of residuals for the computer simulation study 
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Conclusions 

Educational research is replete with examples of latent variables that are hypoth­
esized to represent an interval scale but manifest variables that show an ordinal scale. 
The inability of manifest ordinal variables to follow a normal distribution creates 
problems when these data serve as dependent variables in many statistical analyses 
popular in educational research. The bias introduced in using an ordinal dependent 
variable to make inferences about an interval-scaled latent variable also creates dif­
ficulties. Among the options available to educational researchers, rescaling manifest 
variables measured using an ordinal scale to an interval scale using item response 
theory is particularly attractive. Under the assumption that the latent variable pos­
sesses an interval scale, use of the Rasch IRT model can produce estimated profi­
ciencies that represent an interval scale and that reflect item characteristics. The 
estimated proficiencies may also follow a normal distribution, an important assump­
tion for many statistical procedures, and will avoid the bias associated with using 
ordinal data. Information about the reliability of each estimated proficiency can be 
obtained as well. Put simply, the use of IRT to rescale manifest ordinal data circum­
vents many of the traditional problems associated with these values. 

Still, the use of IRT models to rescale data comes with rigorous assumptions 
that must be satisfied for the models to be of value. In the event that these assump­
tions are not satisfied, we advise researchers to consider other options for handling 
ordinal data, for example, adopting statistical models designed to handle ordinal 
data (e.g., nonparametric techniques) or employing another rescaling technique 
such as multidimensional scaling. Unfortunately, these alternatives lack the abil­
ity to take item characteristics into account in producing interval-scaled data or to 
provide information about the reliability of each estimated proficiency. 

Clearly, additional work is needed to demonstrate that the estimated proficien­
cies for a variety of IRT models and item types show an interval scale. One option 
is to follow Fischer’s (1995) approach in which proficiencies under the Rasch model 
were proved to possess an interval scale. This is the most attractive approach, but 
such proofs are difficult beyond the case of the Rasch model for dichotomous 
responses. Alternatively, computer simulation studies could be performed under 
realistic data conditions to provide evidence of the scale properties of estimated pro­
ficiencies, for example, for graded-response models. At a minimum, these studies 
need to examine factors that would be expected to contribute to scale properties, 
such as range of proficiency and number and type of items, and to employ a com­
prehensive statistical strategy for determining whether the estimated proficiencies 
follow a normal distribution. The availability of computer simulation results of the 
scale properties of estimated proficiencies will help to clarify the settings in which 
the use of IRT models to rescale ordinal data to an interval scale is appropriate. 
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