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Missing Data:
Five Practical Guidelines

Daniel A. Newman1

Abstract
Missing data (a) reside at three missing data levels of analysis (item-, construct-, and person-level), (b) arise
from threemissing datamechanisms (missing completely at random,missing at random, andmissingnot at
random) that range from completely random to systematic missingness, (c) can engender two missing
data problems (biased parameter estimates and inaccurate hypothesis tests/inaccurate standard errors/
low power), and (d) mandate a choice from among several missing data treatments (listwise deletion,
pairwise deletion, single imputation, maximum likelihood, and multiple imputation). Whereas all missing
data treatments are imperfect and are rooted in particular statistical assumptions, some missing data
treatments are worse than others, on average (i.e., they lead to more bias in parameter estimates and
less accurate hypothesis tests). Social scientists still routinely choose the more biased and error-prone
techniques (listwise and pairwise deletion), likely due to poor familiarity with and misconceptions about
the less biased/less error-prone techniques (maximum likelihood and multiple imputation). The current
user-friendly review provides five easy-to-understand practical guidelines, with the goal of reducing
missing data bias and error in the reporting of research results. Syntax is provided for correlation, mul-
tiple regression, and structural equation modeling with missing data.

Keywords
missing data, full information maximum likelihood (FIML), EM algorithm, multiple imputation,
R syntax/R code

Statisticians (e.g., Little & Rubin, 2002; Schafer & Graham, 2002) recommend a few treatments for han-

dling missing data (i.e., maximum likelihood and multiple imputation techniques), which are routinely

ignored by researchers in psychology and management. Disregarding the advice of statisticians in this

way is sometimes relatively harmless, but is sometimes quite harmful, depending on the amount of miss-

ing data, the pattern of missing data, and whether the data are missing in a strongly systematic (vs.

weakly systematic or random) fashion. In order to advance statistical best practice while optimizing the

trade-off between ease of implementation and likely degree of missing data bias and error, I offer five
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practical guidelines and a decision tree for handling missing data. These guidelines address item-level,

construct-level, and person-level missing data. These practical guidelines, if followed, would constitute

a major step forward for rooting out missing data bias and error but would only require complex missing

data treatments to be used in those cases where they are likely to yield the biggest payoffs.

The current presentation of missing data problems and methodological options partly recapitu-

lates previous reviews of the topic (see Allison, 2002; Enders, 2001b, 2010; Graham, 2009; Little

& Rubin, 1987, 2002; McKnight, McKnight, Sidani, & Figueredo, 2007; Newman, 2003, 2009;

Schafer & Graham, 2002). Where I differ from these previous treatments, however, is in offering

a pragmatic decision tree (Figure 1, described in the sections that follow) designed to aid in the selec-

tion of appropriate missing data techniques to address item-level missingness, construct-level miss-

ingness, and person-level missingness. Because I lack the space to thoroughly review all the core

aspects of missing data analysis here, however, the current work can be thought of as a companion

piece to any of the previously cited reviews.

The current article is organized into three sections. First, I describe three missing data levels

(item-level, construct-level, and person-level missingness), three missing data mechanisms (missing

completely at random [MCAR], missing at random [MAR], and missing not at random [MNAR];

Rubin, 1976), two major missing data problems (parameter bias and inferential error), and five

widely available missing data treatments: listwise deletion, pairwise deletion, single imputation/

ad hoc approaches, maximum likelihood (ML) approaches (full information maximum likelihood

[FIML] and the expectation-maximization [EM] algorithm), and multiple imputation. Second, I enu-

merate several missing data considerations that must precede data analysis (e.g., the partial avoid-

ability of missing data, and the basic fact that incomplete data analysis always requires a choice from

among several imperfect alternatives—abstinence is not an option). Third and most important, I

describe five practical guidelines for handling missing data. These guidelines are:

(1) Use all the available data (e.g., do not use listwise deletion).

(2) Do not use single imputation.

(3) For construct-level missingness that exceeds 10% of the sample, ML and multiple imputa-

tion (MI) techniques should be used under a strategy that includes auxiliary variables and

any hypothesized interaction terms as part of the imputation/estimation model.

(4) For item-level missingness, one item is enough to represent a construct (i.e., do not discard a

participant’s responses simply because he or she failed to complete some of the items from a

multi-item scale).

(5) For person-level missingness that yields a response rate below 30%, simple missing data

sensitivity analyses should be conducted (also see Figure 1).

Following these five practical guidelines should curtail a large portion of the avoidable missing

data bias and error in the fields of psychology and management. An appendix is also presented that

gives syntax (in R, SAS, and LISREL) to aid in implementing state-of-the-art missing data routines

(ML and MI). For readers who are in a hurry, I advise skipping down to the section titled ‘‘Five Prac-

tical Guidelines.’’ For those who want to understand more of the bases and terminology underlying

the guidelines, I offer the intervening sections. In the next section, I begin by defining missing data.

What Are Missing Data, and How Much Should We Care?

The term missing data is defined here as a statistical problem characterized by an incomplete data

matrix that results when one or more individuals in a sampling frame do not respond to one or more

survey items (Newman, 2009). Most missing data are due to survey nonresponse, which can vary

from an intentional decision (discarding a survey or skipping sensitive items) to a rather

Newman 373

 at SAGE Publications on April 27, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


unintentional act (forgetting a survey or being too busy to attend to a survey; Rogelberg et al., 2003);

but missing data can also arise from technical errors on the part of the researcher or equipment

(online survey programming errors or computer malfunction).

Three Levels of Missing Data: Item-, Construct-, and Person-Levels

It is helpful to think of missing data as corresponding to three levels of analysis: item-level

missingness, construct-level missingness, and person-level missingness (see Figure 2). Item-

NoYes 

NoYes 

Construct-Level 
Analyses 

Item-Level 
Analyses 

NoYes 

Avoid Missing Data through Research Design

- Personally distribute surveys  - University sponsorship of survey 

- Personalize invitation content - Advance notice & Follow-up reminders 

Is there Item-Level Missingness?

Are you conducting Item-Level Analysis (factor analysis, item-level SEM)  

vs.  

Construct-Level Analysis (regression, composite scale-level SEM)? 

Use Item-Level ML or MI 

Missing Data Approaches 

Use Each Person’s Available 

Item(s) to Represent Construct* 

Report Full Response Rate & Partial Response Rate, and  

Construct-Level N’s  

Is Percent of Respondents who are Partial Respondents > 10%? 
[i.e., Is ratio of # partial respondents/total # respondents > 10%?] 

Use ML or MI Missing Data Approaches, 
including all substantive variables** plus auxiliary 

variables in the imputation/estimation model 

Use ML or MI or Pairwise Deletion, 
including all substantive variables** 

plus auxiliary variables with ML & MI 

Report Overall (Person-Level) Response Rate  

Is Response Rate < 30%?

Figure 1. Decision tree for choosing missing data treatments.
Note: Listwise deletion and single imputation are never recommended. ML ¼ maximum likelihood missing data
routines (i.e., full information maximum likelihood [FIML] or expectation-maximization [EM] algorithm). MI ¼
multiple imputation.
*This rule applies even if the respondent only answers one item from a multi-item scale (also see Appendix B).
**Includes hypothesized interaction terms.
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level missingness occurs when the respondent leaves a few items blank on a multi-item scale

(i.e., the respondent answers only j out of J possible items, where 1 � j < J). Items can be

skipped for a variety of reasons (e.g., items deal with sensitive information such as drug

use or employee theft, items are at the end of a survey and respondents quit before getting

to these items, items have unusual wording or are otherwise confusing, or respondents are skip-

ping items quasi-randomly). Construct-level missingness occurs when the respondent answers

zero items from a scale (i.e., omitting an entire scale or an entire construct). Person-level miss-

ingness involves failure by an individual to respond to any part of the survey.

I note that the levels of missingness are nested, such that item-level missingness can aggre-

gate into construct-level missingness (i.e., when an individual fails to respond to all of the

items on a multi-item scale), and construct-level missingness can aggregate into person-level

missingness (i.e., when a person fails to respond to all of the constructs on a survey). One

advantage of distinguishing the three levels of missingness (item-, construct-, and person-level)

is that the choice of a missing data treatment can depend on which level of missing data you

have, as discussed in the following sections (e.g., see Table 1). Generally speaking, person-

level missingness is far more problematic (i.e., more difficult to address) than either item-

level or construct-level missingness, because with person-level missingness the researcher often

possesses no relevant information about the nonrespondent that could be used to improve esti-

mation and reduce missing data bias and error.

At this point, I also note that the notion of construct-level missingness can be used to sort the

individuals in the sampling frame1 into three mutually exhaustive categories: full respondents, par-

tial respondents, and nonrespondents.

Full respondents – individuals who responded to every single construct on the survey.

Partial respondents – individuals who responded to part of the survey (i.e., more than zero but

fewer than all constructs on the survey),

Nonrespondents – individuals who did not respond to any constructs on the survey.

To restate, partial respondents are individuals with construct-level missingness, whereas full

respondents are individuals with no construct-level missingness.2 I also point out that person-

level missingness determines the nonresponse rate, which is equal to 1.0 minus the response rate.

Complete Data Incomplete Data Three Levels of Missingness 

                    • Item-level  
                      missingness 

                   • Construct-level  
                      missingness 

                   • Person-level  
                     missingness 

323210
54559
53238
53447
34446
32325
33334
44343
32222
12231

321

person
person
person
person
person
person
person
person
person
person

YXXX

323210
.4559
5.238
53447
....6
32325
....4
44343
3...2
12.31

321

person
person
person
person
person
person
person
person
person
person

YXXX

Figure 2. Three levels of missing data: Example (10-person sampling frame, three-item measure of construct X,
single-item measure of construct Y).
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Three Mechanisms of Missing Data: Random Missingness (MCAR) and Systematic
Missingness (MAR and MNAR)

Data can be missing randomly or systematically. According to Rubin’s (1976) typology, there are

three missing data mechanisms (Little and Rubin, 1987; Schafer & Graham, 2002):

MCAR (missing completely at random) – the probability that a variable value is missing does

not depend on the observed data values nor on the missing data values [i.e., p(missing|com-

plete data) ¼ p(missing)]. The missingness pattern results from a process completely unre-

lated to the variables in one’s analyses, or from a completely random process (similar to

flipping a coin or rolling a die).

MAR (‘‘missing at random’’) – the probability that a variable value is missing partly depends

on other data that are observed in the dataset, but does not depend on any of the values that

are missing [i.e., p(missing|complete data) ¼ p(missing|observed data)].

MNAR (missing not at random) – the probability that a variable value is missing depends on

the missing data values themselves [i.e., p(missing|complete data) 6¼ p(missing|observed

data)].

Of the aforementioned missing data mechanisms, one is random (i.e., the MCAR mechanism),

and the other two are systematic (i.e., the MAR mechanism and the MNAR mechanism). I highlight

the seemingly odd labeling of the MAR mechanism. Despite being referred to as missing at random,

MAR is actually a systematic missing data mechanism (the MAR label is confusing and stems from

the unintuitive way statisticians [versus social scientists] use the word random).

To better understand the three missing data mechanisms, it is useful to borrow an example from

Schafer and Graham (2002; see Little & Rubin, 1987). Imagine two variables X and Y, where some

of the data on Y are missing. Now imagine a dummy variable miss(y), which is coded as 0 when Y is

observed and coded as 1 when Y is missing. Under MCAR, miss(y) is not related to Y or to X. Under

MAR, miss(y) is related to X (i.e., one can predict whether Y is missing based on observed values of

X), but miss(y) is not related to Y after X is controlled. Under MNAR, miss(y) is related to Y itself (i.e.,

related to the missing values of Y), even after X is controlled (see Figure 3).

It is often impossible in practice to determine whether data are MNAR, because doing so would

require comparing observed Y values to missing Y values, and the researcher does not have access to

the missing Y values. Generally speaking, the point of delineating the three missing data mechanisms

Table 1. Three Levels of Missing Data and their Corresponding Missing Data Techniques.

Level of
Missing Data

Recommended Missing
Data Technique Favorable Condition for Technique

Item level Use each person’s
mean(across available items) to
represent the construct.

Parallel itemsa

Construct level Use maximum likelihood (ML)
or multiple imputation (MI),
with auxiliary variables.

Missing at random (MAR) mechanism (probability of
missingness is correlated with observed variables) or
missing completely at random (MCAR) mechanism
(completely random missingness)

Person level
(i.e., as reflected
in response
rate)

Use sensitivity analysis. Data are available from previous studies that compare
respondents to nonrespondents on the constructs of
interest (e.g., rmiss,x can be estimated)

Note: Table adapted from Newman (2009).
aSee Appendix B.
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is not to determine which missing data mechanism is at work in a particular data set. Instead, the

point of describing MCAR, MAR, and MNAR mechanisms is to illustrate the assumptions under-

lying different missing data treatments (i.e., listwise and pairwise deletion are unbiased under

MCAR, whereas ML and MI missing data treatments are unbiased under both MCAR and MAR miss-

ingness mechanisms).

I agree with Graham’s (2009) cogent observation that,

These three kinds of missingness should not be thought of as mutually exclusive categories of

missingness, despite the fact that they are often misperceived as such. In particular, MCAR,

pure MAR, and pure MNAR really never exist because the pure form of any of these requires

almost universally untenable assumptions. The best way to think of all missing data is as a

continuum between MAR and MNAR [italics added]. Because all missingness is MNAR

(i.e., not purely MAR), then whether it is MNAR or not should never be the issue. (p. 567)

In other words, missing data are almost never missing completely randomly (MCAR).3 As such,

most missing data fall on a continuum between one extreme—where the systematic missingness pat-

tern depends entirely on the observed data (pure MAR), and the other extreme—where the systema-

tic missingness pattern depends entirely on the missing data (pure MNAR). In typical scenarios,

systematic missingness depends in part on the observed data (MAR) and in part on the missing data

(MNAR), to varying degrees. A corollary of this view is that even though the strict MAR assumption

might not be fully met in practice, missing data techniques based on this assumption (e.g., ML and

MI missing data techniques) can still provide less biased, more powerful estimates than any of the

other available missing data techniques.

Two Missing Data Problems: Bias and Inaccurate Standard Errors/Hypothesis Tests

Generically speaking, the purpose of data analysis is to give unbiased estimates of population para-

meters, as well as to provide accurate (error-free) hypothesis testing. Relatedly, the two chief prob-

lems caused by missing data are bias and error. Bias refers to the systematic over- or underestimation

of a parameter (e.g., underestimated mean, correlation, or regression coefficient). Parameter estima-

tion bias can be thought of as an external validity problem, because the biased estimates reflect a

different population from the target population the researcher intends to understand. Missing data

bias typically occurs when the missingness mechanism is systematic/nonrandom (i.e., under MAR

or MNAR missingness; see Table 2).

X

Y miss(y)

MCAR 

X

Y miss(y)

MAR

X

Y miss(y)

MNAR

Figure 3. Three missing data mechanisms (MCAR, MAR, MNAR) and the continuum between MAR and
MNAR.
Note: Adapted from Schafer and Graham (2002, p. 152). Each line represents the relationship between two
variables. Y is an incomplete variable (partly missing), and X is an observed variable. Miss(y) is a dummy variable
that captures whether data are missing on variable Y. Notice that the difference between MAR and MNAR is
simply the extent to which miss(y) is related to Y itself after X has been controlled. MCAR ¼ missing completely
at random; MAR ¼ missing at random; MNAR ¼ missing not at random.
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Error refers to hypothesis testing errors of inference, such as Type I error (a.k.a., false positive or

‘‘mirage’’—errantly concluding a false hypothesis is supported) and Type II error (low power; a.k.a.,

false negative or ‘‘blindness’’—errantly concluding a true hypothesis is unsupported). Hypothesis

testing errors can be caused by inaccurate standard errors (SEs), which come about when a particular

parameter being significance tested is associated with a sample size that is either too low or too high.

Note that statistical significance testing typically involves calculating a p value for a t distribution

using the equation t ¼ estimate=SE; where the numerator is the parameter estimate being evaluated

(e.g., correlation, regression coefficient), and the denominator (SE) is the degree of uncertainty asso-

ciated with that parameter estimate (the SE term is proportional to 1=
ffiffiffi
n
p

). Thus, if a researcher’s

choice to use a missing data treatment like listwise deletion causes n to decrease by a factor of 4,

then the t value will decrease by a factor of
ffiffiffi
4
p
¼ 2, making her or him much less likely to obtain

p < .05. This is why the choice of a missing data treatment (e.g., listwise deletion) can decrease sta-

tistical power to detect true effects, even in the absence of parameter bias.4

Before moving on, I note that the amount of missing data bias is a multiplicative function of the

amount of missing data (response rate), the strength of the missingness mechanism (from completely

random missingness [MCAR] to strongly systematic missingness [MAR or MNAR]), and the miss-

ing data treatment (see Table 2). As an example of this, Newman and Cottrell (in press) showed that

the amount of missing data bias in the correlation can be estimated as a special case of Thorndike’s

(1949) formula for indirect range restriction:

rxyðcompÞ ¼
rxyðrespÞ þ rmiss; xðrespÞrmiss; yðrespÞð1=u2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=u2 � 1Þr2
miss; xðrespÞ þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=u2 � 1Þr2

miss; yðrespÞ þ 1
q ; ð1Þ

where x and y are the two variables whose correlation we seek to estimate; rxyðcompÞ is the unbiased

correlation between x and y (with complete data; i.e., no missing data bias); rxyðrespÞ is the missing

data biased correlation between x and y (i.e., the pairwise-deleted correlation that was observed

based on the subset of respondents whose data were available for both x and y); the variable labeled

miss is a hypothetical selection variable that defines the missing data mechanism—miss has a con-

tinuous distribution and cut score below which all individuals are missing data on x and/or y—and

above which x and y are both observed (not missing);5 rmiss;xðrespÞ is the range-restricted correlation

between the variables miss and x; rmiss;yðrespÞ is the range-restricted correlation between miss and y

Table 2. Missing Data Bias and Error Problems of Common Missing Data Techniques.

Missingness Mechanism

Missing Data Technique MCAR MAR MNAR

Listwise Deletion Unbiased;
Large Std. Errors
(Low Power)

Biased;
Large Std. Errors
(Low Power)

Biased;
Large Std. Errors
(Low Power)

Pairwise Deletion Unbiased;
Inaccurate Std. Errors

Biased;
Inaccurate Std. Errors

Biased;
Inaccurate Std. Errors

Single Imputation Often Biased;
Inaccurate Std. Errors

Often Biased;
Inaccurate Std. Errors

Biased;
Inaccurate Std. Errors

Maximum Likelihood (ML) Unbiased;
Accurate Std. Errors

Unbiased;
Accurate Std. Errors

Biased;
Accurate Std. Errors

Multiple Imputation (MI) Unbiased;
Accurate Std. Errors

Unbiased;
Accurate Std. Errors

Biased;
Accurate Std. Errors

Note. Recommended techniques are in boldface. Adapted from Newman (2009).
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(note that rmiss;xðrespÞ and rmiss;yðrespÞ are systematic nonresponse parameters that capture the extent to

which the missing data on x and y are missing randomly versus systematically); and u2 is the var-

iance ratio of restricted (respondents-only) variance to unrestricted (complete-data) variance, for the

selection variable miss (i.e., u2 ¼ s2
miss

�
S2

miss; note also that u2 is a monotonic function of the amount

of missing data [response rate], under the assumption of normality; see Newman & Cottrell, in press;

Schmidt, Hunter, & Urry, 1976).6

To see a depiction of how missing data bias works, look at Figure 4. The most extreme form of

missing data bias occurs under direct range restriction (e.g., when data on one variable [y] are miss-

ing due to truncation on another variable [x]—this is selection on x)7 and can lead to substantial

underestimation of the correlation (see scatterplot in Figure 4a). A much less extreme (and more rea-

listic) form of missing data bias occurs when one variable (y) only has a probabilistic tendency to be

selected on (x)—this has been labeled stochastic direct range restriction (selection on x þ e; New-

man & Cottrell, in press; see Figure 4b scatterplot)—and leads to much smaller negative missing

data bias, compared to direct range restriction. A third category of missing data bias is indirect range

restriction, where y and/or x is selected on a third variable called miss, while miss is correlated with y

and/or x. When rmiss;x and rmiss;y have the same sign (e.g., both positive [or both negative]), then the miss-

ing data bias is negative (the observed correlation is biased in the negative direction [Table 3]; e.g., see

Figure 4c scatterplot, where data are missing from the low end of x and from the low end of y). But, when

rmiss;x and rmiss;y have opposite signs, the missing data bias can be substantial and positive (see Table 3

and Figure 4d scatterplot, where data are missing from the low end of x and the high end of y, which

increases the observed positive correlation).

Figure 5 illustrates how the magnitude of missing data bias in the correlation under pairwise dele-

tion is a function of three factors: (a) the amount of missing data (response rate ranges from 0% to

100%), (b) the strength of missingness mechanism (can be [i] completely random [i.e., MCAR; where

rmiss;x ¼ 0 and rmiss;y ¼ 0] or [ii] systematic [i.e., MAR or MNAR; where rmiss;x 6¼ 0 and/or rmiss;y 6¼ 0]),

and (c) whether rmiss;x and rmiss;y have the same sign. If rmiss;x and rmiss;y have the same sign, missing

data bias is negative (leads to underestimation of a positive correlation or overestimation of a negative

correlation). However, bias can become positive when the product term (rmiss;x)(rmiss;y) is negative (see

Equation 1)—which happens when rmiss;x and rmiss;y have opposite signs.

As an aside, I reiterate that MAR and MNAR are both systematic missingness mechanisms, and

they can yield the same amount of missing data bias as each other (see Table 3; both MAR and

MNAR correspond to rmiss;x 6¼ 0 and/or rmiss;y 6¼ 0). The key difference between MAR and MNAR

is whether the nonrandom component of the selection variable (miss) has been observed in the data-

set at hand (as I describe in the section below on auxiliary variables).

In sum, Figure 5 gives a sense of exactly how bad the missing data bias problem is, in the context of

the bivariate correlation parameter when using pairwise deletion. When the response rate is close to

100%, there is no missing data bias. When the missingness mechanism is completely random (MCAR;

rmiss;x and rmiss;y ¼ 0), there is no missing data bias. When the missingness mechanism is systematic and

the systematic nonresponse parameters (rmiss;x and rmiss;y) have the same sign, there is negative missing

data bias. When rmiss;x and rmiss;y have opposite signs, there is positive missing data bias—see Figure 5.

How much should we care about missing data bias and error? The answer to this depends on our

answers to two other questions: (a) How large is the expected degree of missing data bias? and (b)

What can we reasonably do to reduce the amount of missing data bias and error? With regard to the

former question, we note that Anseel, Lievens, Schollaert, and Choragwicka (2010) have reported

the average response rate in the organizational sciences to be 52%—this amount of missing data can

be compared to Figure 5 to estimate how much missing data bias might be expected in the correla-

tion. With regard to the second question (What can we reasonably do to reduce missing data bias and

error?), the easiest answer comes in the form of choosing the least biased and least error-prone miss-

ing data treatments from among the available options.
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Five Missing Data Treatments: Listwise Deletion, Pairwise Deletion, Single Imputation, ML
Routines, Multiple Imputation

Before moving to the next section, I briefly review the currently available missing data treatments.

When data are missing, there are five major categories of missing data treatments, a researcher must

choose among. The choice of missing data treatment has major implications for missing data bias

and error (see Tables 2 and 3; as well as simulations by Enders, 2010; Newman, 2003; Schafer &

Graham, 2002). Five missing data treatments are described in Table 4. Because this table is essential

to what comes next, I recommend that the reader take a very careful look at Table 4. I will discuss

aspects of the various missing data treatments in the following sections.

Three Key Considerations Prior to Data Analysis

Before continuing with the discussion of missing data analysis, however, there are three major con-

siderations that should first be understood. These are presented briefly now.

0

1

2

3

4

5

6

0 1 2 3

Figure 4a. Direct Range Restric�on (selec�on on x);
leads to Nega�ve Bias in the correla�on 

Figure 4b. Stochas�c Direct Range Restric�on
[Probabilis�c Selec�on on X (selec�on

on x + e)]; Smaller Nega�ve Bias* 

Figure 4c. Indirect Range Restric�on (selec�on on miss,
where miss is posi�vely correlated with x and y);

Smaller Nega�ve Bias* 

Figure 4d. Indirect Range Restric�on (selec�on on
miss, where miss is posi�vely correlated with x
and nega�vely correlated with y); Posi�ve Bias

4 5 6
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6

0 1 2 3 4 5 6

Y

X

Figure 4. Missing Data Bias.
Note: Both stochastic direct range restriction (b) and indirect range restriction (c) typically yield smaller missing
data bias than does direct range restriction (a). The precise amount of missing data bias can be understood by
referring to Equation 1, because all the scenarios depicted in Figure 4 are special cases of Equation 1 (as
described in Table 3, third column).
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Missing Data Are Partly Unavoidable, and Partly Avoidable

To some extent, missing data are a natural and unavoidable consequence of the ethical principle of

respect for persons and its application in the requirement that research participation be voluntary

(National Commission for the Protection of Human Subjects, 1979). So long as would-be partici-

pants who are sampled from the target population are allowed to autonomously opt out of the study

(or to opt out of part of the study), missing data will be an ethically unavoidable data analysis prob-

lem. Pertaining to this, we should be wary of research reports that claim response rates near 100%,

and should ask questions about how these extremely high response rates were secured (e.g., How

was confidentiality maintained? Did the supervisors know which employees had responded? [i.e.,

Table 3. Missing Data Bias in the Correlation, under Pairwise Deletion versus Maximum Likelihood (ML)
Estimation, for 11 Missing Data Selection Mechanisms.

Missing Data Selection Mechanism

Rubin’s
(1976)

Mechanism

Selection
Variable
(miss)

Pairwise Deletion
Bias

ML Estimation
Bias

(1) Completely random missingness
(y and/or x selected randomly)

MCAR miss ¼ e Zero bias Zero bias

(2a) Direct range restriction
(y selected on x) [maximally
systematic missingness]

MAR miss ¼ x Negative bias Zero bias

(2b) Direct range restriction
(x selected on y)

MAR miss ¼ y Negative bias Zero bias

(3a) Stochastic direct range
restriction
(y probabilistically selected on x)
[weaker systematic missingness]

MAR miss ¼ x þ e Smaller negative bias Zero bias

(3b) Stochastic direct range
restriction
(x probabilistically selected on y)

MAR miss ¼ y þ e Smaller negative bias Zero bias

(4) Indirect range restriction
(y and/or x selected on miss; miss
is observed)rmiss, x and rmiss, y have
[same sign] fopposite signsg

MAR miss ¼ miss [Smaller negative bias]
fPositive biasg

Zero bias

(5a) Direct range restriction
(x selected on x)

MNAR miss ¼ x Negative bias
(Same as MAR)

Same negative
bias as pairwise

(5b) Direct range restriction
(y selected on y)

MNAR miss ¼ y Negative bias
(Same as MAR)

Same negative
bias as pairwise

(6a) Stochastic direct range
restriction
(x probabilistically selected on x)

MNAR miss ¼ x þ e Smaller negative bias
(Same as MAR)

Same negative
bias as pairwise

(6b) Stochastic direct range
restriction
(y probabilistically selected on y)

MNAR miss ¼ y þ e Smaller negative bias
(Same as MAR)

Same negative
bias as pairwise

(7) Indirect range restriction
(y and/or x selected on miss; miss
is unobserved)rmiss, x and rmiss, y

have [same sign] fopposite signsg

MNAR miss ¼ miss [Smaller negative bias]
fPositive biasg
(Same as MAR)

[Same negative bias
as pairwise]
fSame positive
bias as pairwiseg

Note. Pairwise deletion is unbiased under MCAR, while ML estimation is unbiased under MCAR and MAR. Adapted from
Newman and Cottrell (in press). e¼ random error term; MCAR¼missing completely at random; MAR¼missing at random
(i.e., a type of systematic missingness, with a confusing label; Rubin, 1976); MNAR ¼ missing not at random.
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they should not know]; Did the online survey administration require that all items be answered

before proceeding to the next page? [i.e., proceeding to the next page should not be contingent

on completing all items]).

On the other hand, much missing data are avoidable. Anseel et al. (2010) have conducted a

major meta-analysis of response rates in the organizational sciences (see also Cycyota & Harrison,

2006; Dillman, 1978; Roth & BeVier, 1998; Yammarino, Skinner, & Childers, 1991), and found that

the major predictors of high response rates are: (a) personally distributing surveys (r ¼ .38); (b)

using identification numbers (r ¼ .18), which I note can appear to threaten respondent confidenti-

ality in some cases and should therefore not be used as an explicit response-enhancing technique,

although identification methods of some sort are a requirement for longitudinal studies, multisource

studies to reduce common method bias, and social network studies; (c) personalization of the survey

invitation (r¼ .14); (d) university sponsorship of the survey (r¼ .11); and (e) giving advance notice

(r¼ .08). Interestingly, incentives appeared to have no positive average effect on response rates (r¼
–.04). Also, another way to prevent avoidable missing data is that researchers conducting longitu-

dinal data collections should not give up on initial nonrespondents; each individual in the sampling

frame should be contacted at every wave of data collection, regardless whether she or he has

responded to past waves of data collection.

Define the Target Population of Interest

In the organizational and psychological sciences, researchers rarely attempt to explicitly define the

target population to which a study should generalize. Rather, we often draw inferences to vaguely or

implicitly defined populations, such as ‘‘all working adults’’ or ‘‘working adults in customer service

jobs.’’ For most single-organization studies, it would probably be more appropriate for researchers to

limit their generalizations to the original sampling frame (e.g., to ‘‘working adults in this particular

company’’ and not to ‘‘all working adults’’).
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Figure 5. Missing data bias in the correlation, under pairwise deletion.
Note: Missing data bias ¼ rxyðrespÞ– rxyðcompÞ. In the present example, rxyðcompÞ ¼ .5. For completely random
missingness (MCAR), rmiss;x¼ .0 and rmiss;y¼ .0. For weak systematic missingness (MAR or MNAR), rmiss;x ¼ .2 or
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that one was positive and the other was negative. MCAR ¼ missing completely at random; MAR ¼ missing at
random; MNAR ¼ missing not at random.
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When considering missing data, the problem of limited target populations gets worse. By con-

ducting all of our analyses on survey respondents, we can now only generalize our study results

to ‘‘working adults who fill out surveys.’’ And perhaps worst of all, a listwise deletion missing data

strategy only makes sense if one’s target population is restricted to ‘‘working adults who fill out sur-

veys completely’’—such a target population is rarely theoretically defensible.

Guideline 0: Abstinence Is Not an Option

There is one last consideration that must be made prior to data analysis, but that is essential for every

researcher to understand prior to using the five practical guidelines below—as such, I refer to this

principle as ‘‘Guideline 0.’’ After data collection, every researcher must understand that choosing a

missing data treatment involves choosing the lesser of evils. Avoiding missing data treatments is not

an option. The data analyst must choose listwise deletion, pairwise deletion, a single imputation/ad

hoc technique, a maximum likelihood technique, or multiple imputation—and then defend that

choice. Missing data problems cannot be avoided by simply ignoring them. If you are using a default

Table 4. Missing Data Treatments.

Missing Data
Treatment Definition Major Issues

Listwise
Deletion

Delete all cases (persons) for whom any data
are missing, then proceed with the analysis.

Discards real data from partial respondents.
Smallest n, lowest power.
Biased under MAR and MNAR.

Pairwise
Deletion

Calculate summary estimates (means, SDs,
correlations) using all available cases
(persons) who provide data relevant to
each estimate, then proceed with analysis
based on these estimates.

Different correlations represent different
subpopulation mixtures.

Sometimes covariance matrix is not positive
definite.

Biased under MAR and MNAR.
No single n makes sense for whole correlation

matrix (SEs inaccurate).
Single

Imputation
(ad hoc
techniques)

Fill in each missing value [e.g., using mean
(across persons) imputation, regression
imputation, hot deck imputation, etc.], then
proceed with analysis based on partially-
imputed ‘complete’ dataset.

Mean (across persons) imputation and regression
imputation are both biased under MCAR!

No single n makes sense for whole correlation
matrix (SEs inaccurate).

SEs underestimated if you treat dataset as
complete.

Maximum
Likelihood

Directly estimate parameters of interest from
incomplete data matrix (e.g., FIML); or
Compute summary estimates [means, SDs,
correlations] (e.g., EM algorithm), then
proceed with analysis based on these
summary estimates.

Unbiased under MCAR and MAR.
Improves as you add more variables to the

imputation model.
Number of variables should be < 100.
Accurate SEs for FIML.
For EM algorithm, no single n makes sense for

whole correlation matrix (SEs inaccurate).
Multiple

Imputation
Impute missing values multiple times, to

create 40, partially-imputed datasets.
Run the analysis on each imputed dataset.
Combine the 40 results to get parameter
estimates and standard errors.

Unbiased under MCAR and MAR.
Improves as you add more variables to the

imputation model.
Number of variables should be < 100.
Accurate SEs.
Gives slightly different estimates each time.
When used with SEM, suffers more

nonconvergences.

Note: See Allison (2002), Enders (2001b, 2010), Graham (2009), Marsh (1998), Newman (2003, 2009), Schafer and Graham
(2002). MAR ¼ missing at random; MNAR ¼ missing not at random; MCAR ¼ missing completely at random.
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approach of listwise or pairwise deletion, then you are—in reality—choosing listwise or pairwise

deletion. Given the widespread availability of software that implements ML and MI missing data

routines (e.g., see Appendix A), it is no longer defensible to simply say, ‘‘We are not going to bother

with the fancy missing data routines.’’ Each researcher must now be in the position to defend why his

or her chosen missing data technique is equal or superior to its available alternatives in terms of

missing data bias and error. Such arguments are increasingly hard to make in defense of listwise and

pairwise deletion (at least for traditional correlation, regression/ANOVA, factor analysis, and SEM

analyses—which are all based on a covariance matrix and vector of means, and for which ML and

MI routines are now widely available; see Appendix A). With that said, the decision tree in Figure 1

does provide a rule of thumb to help designate when pairwise deletion might be similarly as accurate

as a state-of-the-art (ML or MI) technique.

Five Practical Guidelines for Missing Data Analysis

Guideline 1: Use All the Available Data

(Do Not Use Listwise Deletion). The dictum that researchers should use all the available data is the

‘‘fundamental principle of missing data analysis’’ (according to Newman, 2009, p. 11). As sensible

as this principle may sound, it is still routinely ignored by researchers in management and psychol-

ogy who regularly opt for listwise deletion (cf. Peugh & Enders, 2004). Listwise deletion involves

deleting all cases (persons) for whom any data are missing, then proceeding with the analysis. In

other words, the analysis is based on the full respondents only, and the data from partial respondents

get discarded by the researcher. Listwise deletion has the ill effect of converting item-level and

construct-level missingness into person-level missingness.

The prevalence of listwise deletion is attested by phrases of the following sort, which are regu-

larly found in the Method sections of our top journals: ‘‘Out of 542 surveys returned, 378 provided

usable data and were included in the analysis.’’ The problem with this sort of statement is that it is

inherently false. All of the respondents who provided data provided ‘‘usable data,’’ but the researcher

chose to throw away some of this precious information. Indeed, listwise deletion compounds the

problem of sample nonresponse, by adding to it the extra problem that the researcher herselft or him-

self creates additional missing data by discarding the partial respondents.

There are several problems with listwise deletion. First, regardless whether missingness is sys-

tematic versus random, listwise deletion often greatly reduces sample size and statistical power

(i.e., it increases SEs and Type II error). Second, even when statistical power seems adequate, list-

wise deletion yields biased parameter estimates under systematic (MAR and MNAR) missingness.

Third, listwise deletion only supports inferences to a target population of ‘‘individuals who fill out

surveys completely,’’ and restricting the target population in this way is almost never theoretically

defensible. Fourth, because listwise deletion involves discarding data that cost the partial respon-

dents’ valuable time and energy to provide, failure to use all the available data in one’s analyses may

violate an ethical imperative (Rosenthal, 1994). Even throwing out data from a small number of par-

tial respondents (2%-3%) would be suboptimal, potentially unethical, and totally unnecessary.

In sum, because listwise deletion often leads to extreme levels of inferential error (low power)

and missing data bias (over- or underestimation of effect sizes), and because it is based on theore-

tically and ethically indefensible rationales, it should be avoided outright. This prohibition should

also extend to the intuitive yet misguided practice of using listwise deletion to ‘‘double check’’ the

accuracy of more robust missing data approaches like ML estimation and multiple imputation. There

is no good reason for this. When listwise deletion yields discrepant results from ML or MI tech-

niques, this does not in any way cast doubt onto the ML and MI results; rather, it only suggests that

the missingness mechanism is in part MAR (which is quite often the case).8 Further, there is no

384 Organizational Research Methods 17(4)

 at SAGE Publications on April 27, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


logical basis for using listwise deletion in this way. If the listwise result agrees with the ML and MI

result, then we will accept the ML and MI result; and if the listwise result disagrees with the ML and

MI result, then we will still accept the ML and MI result (because ML and MI provide accurate SEs

and are unbiased under both MAR and MCAR mechanisms, whereas listwise deletion provides

highly inflated SEs and is only unbiased under MCAR)—the information value of the listwise dele-

tion result is nil either way.

Guidelines 3 and 4 (reviewed below) follow directly from the current principle. Once we are

using all of the available data, the question arises of how we should use the available data. Guide-

lines 3 and 4 involve the cases of construct-level missingness and item-level missingness. But first, I

address the dangers of single imputation.

Guideline 2: Do Not Use Single Imputation

(Do Not Simply Impute Data Once and Then Proceed as Though You Have Complete Data). Single impu-

tation techniques involve filling in each missing datum with a ‘‘good guess’’ as to what the missing

datum should be. Fortunately, single imputation techniques are much less popular now than they

once were. Common examples of single imputation are: (a) mean (across persons) imputation—

replacing each missing datum with the group mean for the corresponding variable, (b) hot deck

imputation—replacing each missing datum with a value from a ‘‘donor’’ who has similar

scores on other variables (which can be more error prone than listwise deletion; see Switzer, Roth,

& Switzer, 1998), and (c) regression imputation—replacing each missing datum with a predicted

value based on a multiple regression equation derived from observed cases.

Single imputation suffers two major drawbacks. First, most single imputation techniques are

biased under MCAR. For example, because mean imputation imputes a constant mean for each

missing value (see Figure 6a), the resulting sample estimates of the variance and the correlation

will be downwardly biased—even if the missingness mechanism is completely random (MCAR).

As another example, regression imputation leads to underestimation of the variance and overes-

timation of the correlation (because imputed values fall exactly on the regression line; see Figure

6b)—even if the missingness mechanism is MCAR! It is possible to improve regression imputa-

tion methods, however, by adding a random error term to the imputed values (i.e., stochastic

regression imputation; see Figure 6c). Stochastic regression imputation works to remove the

missing data bias in regression imputation (described below) that previously underestimated the var-

iance and overestimated the correlation (i.e., stochastic regression imputation is unbiased under both

the MCAR and MAR missingness mechanisms). Nonetheless, even when considering stochastic

regression imputation (which is unbiased under MAR), I still do not recommend single imputation,

for the following reason.

The second major drawback is that single imputation suffers the inability to calculate accurate

SEs for hypothesis testing (i.e., there is usually no single value of n that corresponds well to all the

parameter estimates). This problem is coupled with the real and common danger that many research-

ers tend to use the maximum n (treating the partially imputed data set as though it were a complete

data set), which naturally leads to deflated SEs and creates Type I errors of inference (a.k.a., mirages,

where incorrect hypotheses are falsely supported). As described in the following, multiple imputa-

tion solves this problem.

Overall, the main reason to place a moratorium on single imputation is because multiple imputa-

tion has all of the advantages of single imputation, but none of its major drawbacks.9 Thus, for typ-

ical data-analytic applications (e.g., involving correlation, regression/ANOVA, factor analysis, and

SEM), single imputation should be forbidden.
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Guideline 3: Construct-Level Missingness: Use Maximum Likelihood or Multiple Imputation
Missing Data Treatments Whenever 10% or More of The Respondent Sample Is Made Up
of Construct-Level Partial Respondents (i.e., Respondents Who Reported on at Least One
Construct but Who Omitted at Least One Construct)

1. Report the response rate, full response rate, and partial response rate; as well as the number of

respondents for each construct (or for sets of constructs).

The response rate can be formally defined using the equation:

Response rate ¼ n partial respondents þ n full respondentsð Þ=n contacted: ð2Þ

For the purpose of Equation 2, we can treat n partial respondents as the number of respondents

with construct-level missingness; whereas n full respondents is the number of respondents with no

construct-level missingness. n contacted is the number of individuals contacted with the survey invi-

tation. Equation 2 can be distinguished from three other, related expressions:

Full response rate ¼ n full respondents=n contacted; ð3Þ

Partial response rate ¼ n partial respondents=n contacted; ð4Þ

Nonresponse rate ¼ n nonrespondents =n contacted: ð5Þ

Note that: (a) Full response rate þ Partial response rate þ Nonresponse rate ¼ 1.0, and (b)

Response rate ¼ Full response rate þ Partial response rate ¼ 1.0 – Nonresponse rate.

In order for the consumers of our research to be able to understand likely missing data bias, it is

essential for researchers to report the response rate, partial response rate, and full response rate. For

example, a researcher could report:

In the current study, surveys were distributed to 500 employees, 300 of whom provided

responses (response rate ¼ 60%). Two hundred and fifty of these were full respondents who

answered every scale (full response rate¼ 50%), whereas 50 of these were partial respondents

who answered some but not all of the scales (partial response rate ¼ 10%);

or more succinctly:

Surveys were returned by 300 out of 500 employees (response rate ¼ 60%; full response ¼
50%; partial response ¼ 10%).

Additionally, the presence of partial respondents implies that the response rate varies systemati-

cally across constructs. This information should be reported in the footnote of a paper’s correlation

matrix. For example:

N ¼ 246 to 276 for variables A, B, and G to J; and N ¼ 172 to 189 for variables C to F.

Some researchers already follow this practice of concisely reporting variable-wise response rate

information, which I applaud.

2. If 10% or more of the respondent sample is made up of partial respondents (i.e., if partial

response rate / [partial response rate þ full response rate] > .10), then maximum likelihood
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(EM or FIML) or multiple imputation approaches should be used, instead of pairwise

deletion.

In this section, I will first provide some advice, and then give the rationale behind it. Generally

speaking, the advice is to use ML and MI missing data routines when there is construct-level miss-

ingness (i.e., when there is a sizeable portion of partial respondents). When there is a sizeable

amount of construct-level missingness, then ML and MI routines typically outperform listwise and

pairwise deletion substantially in terms of reduction in missing data bias and error (Allison, 2002;

Enders, 2010; Newman, 2003; Schafer & Graham, 2002). On the other hand, when there is no

construct-level missingness, then ML and MI routines perform no better than listwise and pairwise

deletion. To introduce the current practical guideline, I begin by defining the ratio, percentage of

respondents who are partial respondents (PRPR):

PRPR ¼ n partial respondents= n partial respondentsþ n full respondentsð Þ; ð6Þ

which is also equal to the partial response rate divided by the response rate (see Equations 2 and 4).

This ratio indexes the extent to which the respondents are partial respondents (as opposed to full

respondents). If this percentage of respondents who are partial respondents falls below 10%, then

it usually doesn’t make much difference whether the researcher is using pairwise deletion versus

state-of-the-art ML and MI missing data techniques. (To be fair, I acknowledge that statisticians

would recommend ML and MI techniques over pairwise deletion even in this case, because ML and

MI are robust to MAR missingness; but the point I am proposing here is that it will not make much

practical difference in this particular case [i.e., when PRPR < 10%]).

The choice of a 10% cutoff is arbitrary, but it attempts to reflect a consistent standard that

appreciates the fact that—when there is little construct-level missingness—then the choice of using

ML and MI techniques versus using pairwise deletion will make little difference. One example of a

research design that nearly always exhibits >10% PRPR (i.e., a high portion of construct-level miss-

ingness) is a longitudinal design, where many of the respondents at Time 1 drop out before Time 2.

In order to understand why this PRPR <10% guideline works, I briefly explain ML and MI missing

data routines (Table 4).

Multiple Imputation. Multiple imputation is a procedure that operates by performing an unbiased sin-

gle imputation routine (like stochastic regression imputation) over and over again (i.e., it makes mul-

tiple, different guesses at what the missing data might have been). It then takes advantage of the

variation between those different guesses/imputations when indexing the degree of uncertainty

(SE) associated with each parameter estimate. As such, significance tests/hypothesis tests based

on MI are more accurate (i.e., fewer errors of inference).

The MI missing data routine (Rubin, 1987; Schafer, 1997) operates in three phases. In Phase 1

(imputation phase), the available data are used to impute multiple data sets (Graham, Olchowski, &

Gilreath, 2007, recommend imputing at least m ¼ 40 different data sets to approach optimal statistical

power). Data sets are imputed using a routine similar to stochastic regression imputation, which is

unbiased under MAR and for which the regression parameters are drawn from a Bayesian parameter

distribution (see Figure 6d). In Phase 2 (analysis phase), the researcher analyzes each of the (e.g., m¼
40) data sets using whichever analysis she or he would have ordinarily used on complete data (as if

there had been no missing data), and she or he then saves the parameter estimates (e.g., correlations,

regression coefficients, factor loadings, SEM path coefficients) and their corresponding SEs for all

(e.g., m¼ 40) data sets. Finally, in Phase 3 (pooling phase), the parameter estimates and their SEs from

the multiple, partly imputed data sets are combined. The parameter estimates are simply averaged

across the m imputed data sets to get the final parameter estimates. The standard errors are combined

across m imputed data sets using Rubin’s (1987) formula:
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S:E: ¼
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M

� �
1

M � 1

� �XM
m¼1

bm � �b
� �2

vuut ; ð7Þ

where 1
M

PM
m¼1

S:E:2m is the average squared SE across imputations, 1
M�1

� � PM
m¼1

bm � �b
� �2

is the var-

iance of the parameter estimates (e.g., b’s) across imputations, and 1þ 1
M

� �
is a correction factor

that converges to 1 as the number of imputations increases.

The two important things to remember about MI are that: (a) the pooled MI parameter estimates

are unbiased under both MAR and MCAR missing data mechanisms, and (b) the pooled MI SEs are

accurate (i.e., the standard errors, upon which hypothesis tests are based). The parameter estimates

are unbiased under MAR because they are based on stochastic regression imputation. The SEs are

accurate because of the second term in Equation 7, 1
M�1

� � PM
m¼1

bm � �b
� �2

, which is the variance of

the parameter estimates between imputations. As mentioned previously, multiple imputation works

by performing an unbiased single imputation routine over and over again (i.e., by making multiple,

different guesses at what the data might have been), and then takes advantage of the variance

between those guesses/imputations when indexing the degree of uncertainty (SE) associated with

each parameter estimate. As such, the operative word in multiple imputation is multiple, not imputa-

tion—the whole point is that each single imputation contains some inaccuracy, so the imputations

are performed multiple times and then aggregated in a way that accounts for the uncertainty of each

imputation. This way, significance tests/hypothesis tests based on MI have the appropriate level of

uncertainty.

This advantage of MI (i.e., the accurate SEs/hypothesis tests) can perhaps be most easily under-

stood by comparison to other missing data techniques. Under listwise deletion, the SEs are too large

(because the sample size is too small due to discarding real data from partial respondents); under

single imputation, the SEs are too small (because the sample size is too large due to pretending one

has a complete data set when in fact one does not); but under multiple imputation, the SEs are just

right. This is because the multiple imputation SEs are essentially single-imputation SEs that have

been adjusted upward using the between-imputations variance in parameter estimates. To restate,

listwise deletion overestimates the uncertainty of one’s results by discarding partial respondents

(increasing Type II error), single imputation underestimates the uncertainty of one’s results by treat-

ing partial respondents as though they were full respondents (increasing Type I error), and multiple

imputation is in between—it appropriately treats partial respondents as partial respondents, and

thereby provides the accurate level of uncertainty corresponding to each parameter and hypothesis

test. This is why Guideline 3 makes sense: When there are no (or very few) partial respondents, then

it makes almost no difference whether one uses MI versus a less robust missing data routine (i.e., vs.

pairwise deletion or stochastic regression imputation).

Maximum Likelihood. ML missing data routines are mathematically complex, although some of the

most user-friendly descriptions of them have been provided by Enders (2001b, 2010). I refer the

reader to those excellent summaries to understand the mechanics of the approach. In brief, ML rou-

tines operate by choosing parameter estimates that maximize the probability of the observed data.

Stated differently, ML routines use a likelihood function (e.g., see Finkbeiner, 1979, for a FIML like-

lihood function) that describes the relationship between a likelihood (i.e., a probability based on the

observed data) and different values of the parameter estimates. ML techniques then select the para-

meter estimates that maximize the likelihood function based on the available data. For the current

article, we emphasize the following points with regard to ML techniques:
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� ML missing data routines provide results that are essentially identical to results from MI rou-

tines (Collins, Schafer, & Kam, 2001, p. 33). This is because both ML and MI are designed to

provide unbiased parameter estimates under MAR and MCAR missingness mechanisms.10

� ML missing data techniques are not overtly imputation techniques, and so they might be per-

ceived as more palatable by naı̈ve readers and reviewers who are philosophically opposed to

multiple imputation because they fear that multiple imputation routines are ‘‘making up

data.’’ (This fear is unfounded, because the point of MI is not to make up data but rather

to render unbiased parameter estimates and accurate SEs; however, the philosophical oppo-

sition that lives in the minds of some reviewers can be very real.) This point is essentially

cosmetic.

� There are two common ML missing data routines: FIML and the EM algorithm.

� FIML is a direct estimation technique and operates by directly analyzing the incomplete data

set to yield unbiased parameter estimates and accurate SEs.

� The EM algorithm is not a direct estimation technique, but instead operates by providing sum-

mary statistics (a covariance matrix and vector of means), which can then be used as input to

another analysis routine (e.g., one can perform multiple regression and SEM on a covariance

matrix). The chief problem with the EM algorithm is that, even though the parameter esti-

mates will be unbiased under MAR, there is typically not one single sample size that appro-

priately corresponds to the entire covariance matrix. As such, the EM algorithm is not

recommended for use with hypothesis testing (with the possible exception of tests that con-

servatively use the minimum observed sample size to correspond to the EM covariance

matrix—such tests provide adequate Type I error protection, but are still vulnerable to Type

II error).

3. When using ML or MI missing data treatments, the researcher should report the ML correla-

tion matrix, standard deviations, and means (estimated via the EM algorithm), instead of the

listwise- or pairwise-deleted correlation matrix, standard deviations, and means. The reason-

ing here is that the ML correlation matrix, SDs, and means are unbiased under both MAR and

MCAR missingness, whereas the listwise- and pairwise-deleted parameter estimates are

biased whenever the data are not MCAR.

4. When using ML or MI missing data treatments, the missing data imputation or estimation

model should include all of the variables in the theoretical model under consideration

(including product terms when testing interaction effects).

When implementing ML or MI routines, the researcher must specify which variables will be used

as part of the missing data routine. It is important to include all variables in the imputation model that

will appear in the substantive theoretical model being tested, including any interaction terms that

will be used to assess moderator hypotheses. If interaction terms are left out of the missing data

imputation model, then the estimated interaction effect will be biased toward zero (Graham,

2009). For an excellent summary of missing data treatments for interaction effects, see Enders, Bar-

aldi, and Cham (2014).

5. When using ML or MI missing data treatments, the missing data imputation or estimation

model should include extra, auxiliary variables that are not part of the theoretical model

under consideration, when possible.

In addition to using all the substantive variables from one’s theoretical model (including interac-

tion terms) as part of the missing data imputation/estimation model, some researchers have helpfully

advised that researchers should also use auxiliary variables. Auxiliary variables are variables

included in the missing data imputation/estimation model that are not part of one’s theoretical
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model, nor do they have any particular substantive interest in the study at hand (Collins et al., 2001;

Graham, 2003). That is, auxiliary variables are variables that the researcher includes in the imputa-

tion model for the express purpose of reducing missing data bias and error. The rationale behind aux-

iliary variables is summarized in the following.

Auxiliary Variables Can Convert MNAR Missingness Into MAR Missingness. When looking at Tables 2 and

3, one of the big problems in missing data analysis that becomes painfully apparent is that there are

no widely available missing data treatments that are especially good at treating the MNAR missing-

ness mechanism (i.e., the best available missing data techniques, ML and MI, are both still biased

under MNAR). Enders (2010) has summarized that MNAR missing data problems have often been

treated using either selection models (Heckman, 1979; Puhani, 2000; Winship & Mare, 1992) or pat-

tern mixture models (Glynn, Laird, & Rubin, 1986; Little, 1993; Rubin, 1987). Unfortunately, both

selection models and pattern mixture models are necessarily based on assumptions about the missing

data mechanism that are potentially wrong and essentially untestable, and as such these alternatives

often perform worse than ML or MI techniques, even under MNAR (see Enders, 2010).

One especially good piece of advice for dealing with MNAR missingness is to use auxiliary vari-

ables as part of the imputation model (Collins et al., 2001), for the reason that including auxiliary

variables in the imputation model can convert an MNAR missingness mechanism into an MAR

missingness mechanism. To understand why, look at Figure 3. In Figure 3, note that the one factor

that distinguishes MNAR missingness from MAR missingness is the extent to which there still exists

a relationship between the incomplete variable (Y) and the missingness pattern on Y (miss(y)), after

the other observed variables (X variables) have been controlled. So in order to convert an (untrea-

table) MNAR missingness mechanism into an (easily treatable) MAR missingness mechanism, one

needs to simply choose the right observed (X) variables to include in the imputation model. This is

where auxiliary variables come in, because they can play the role of observed (e.g., X) variables,

which help to erase the leftover relationship between Y and miss(y).

Now, when looking at Table 3, we also see that one way to distinguish MNAR from MAR miss-

ingness is to notice whether the selection variable (which I have labeled miss) has been observed. In

the most common scenario, the selection variable (miss) is only a hypothetical variable and has not

been directly observed (i.e., when the missing data are not due to personnel selection or some other

intentional missingness procedure, then the selection variable miss [which I am using to describe the

missingness mechanism] has not been directly observed). In such cases, one purpose of auxiliary

variables is to serve as an approximate surrogate for the unobserved selection variable, miss. As

such, if one chooses auxiliary variables that are: (a) correlated with the hypothetical selection vari-

able miss (i.e., auxiliary variables that are correlated with the probability of missingness on the sub-

stantive variables of interest) and also (b) correlated with the substantive variables of interest

themselves (e.g., X and Y), then such auxiliary variables will go a long way toward helping convert

an MNAR missingness mechanism into an MAR missingness mechanism.11 This auxiliary variables

procedure thus helps to remove missing data bias, because ML and MI approaches are unbiased

under the MAR missingness mechanism.

One final issue with using auxiliary variables is that under the FIML approach, the auxiliary vari-

ables must be included in the estimation model (e.g., in the SEM model). On the one hand, if useful

missing data ‘‘auxiliary’’ variables are the variables that tend to be correlated with X and Y (as well

as with the hypothetical selection variable miss), then these so-called auxiliary variables might well

make sense as control variables or as mediator variables in one’s substantive regression or SEM

model. On the other hand, if useful missing data auxiliary variables are truly auxiliary in the sense

that they cannot be incorporated into the substantive theoretical model at hand, then procedures exist

for including auxiliary variables in a FIML analysis without disturbing one’s substantive model.

Two such approaches were recommended by Graham (2003; i.e., the ‘‘extra dependent variables
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(extra DV)’’ approach, and what has come to be known as the ‘‘saturated correlates’’ approach),

although the two approaches yield essentially identical results. In Appendix A, I provide LISREL

syntax and R syntax for conducting multiple regression while implementing Graham’s (2003) FIML

procedure that involves specifying the auxiliary variables as ‘‘extra dependent variables’’ in one’s

analytic model (i.e., the ‘‘extra DV’’ procedure). This extra DV approach for incorporating auxiliary

variables into FIML analyses is highly recommended, because it combines the advantages of FIML

(FIML reduces missing data bias and gives accurate standard errors/more accurate hypothesis tests)

with the advantages of auxiliary variables (auxiliary variables reduce missing data bias and increase

statistical power).

Guideline 4: Item-Level Missingness—One Item Is Enough!

1. When conducting an item-level analysis (e.g., item-level factor analysis or item-level SEM),

the analysis should be based on ML or MI missing data techniques.

2. When conducting a construct-level analysis, if a participant responds to any items (even a

single item) from a multi-item scale, then the participant’s average response across the

item(s) answered should be used to represent the participant’s scale/construct score.

Under ideal conditions, it would be nice if researchers could treat item-level missingness using

the same practices that are recommended for construct-level missingness (see Guideline 3). That is,

ideally one could use ML or MI missing data techniques to treat item-level missingness. I recom-

mend that whenever possible, ML (i.e., FIML or EM algorithm) or MI techniques should be used

when conducting item-level analyses such as item-level factor analysis, item-level SEM, and com-

puting Cronbach’s alpha. When such analyses involve hypothesis testing/significance testing (i.e.,

item-level SEM), then I recommend using FIML or MI when available; otherwise one should ana-

lyze the EM algorithm covariance matrix but should base the SEs on the minimum observed sample

size in order to be conservative about hypothesis testing with the EM algorithm (i.e., emphasizing

Type I error protection when using an EM covariance matrix with item-level analyses; see Enders &

Peugh, 2004; cf. Savalei & Bentler, 2009).

In practice, however, using ML and MI techniques on item-level data is often difficult to do.

One major problem is that ML and MI techniques can encounter difficulties converging when the

number of variables exceeds 100—an issue that led Graham (2009) to conclude that the number

of variables used with ML and MI missing data techniques should be kept to fewer than 100

when the sample size is large (over N ¼ 1,000), and the number of variables should be kept even

smaller when the sample sizes are smaller. Because of this issue, it is often much easier for the

researcher to use a two-step procedure: (Step 1) First, combine (e.g., average) sets of items to

form their respective composite scores representing each theoretical construct being studied,

(which reduces the total number of variables to under 100), and then (Step 2) conduct ML or

MI analyses on the construct-level scores (see Guideline 3). Step 2 (using ML or MI on the

construct-level data set) is fairly straightforward (see Appendix A), but Step 1 (combining items

into composite scale scores in the presence of item-level missing data) is less straightforward, as

discussed below.

The problem is that, because ML and MI techniques do not always work for item-level missing-

ness (i.e., because the number of items is large), then when forming scale composite scores from

items the researcher must choose between two missing data treatments that are not state of the art:

(a) listwise deletion cutoffs, versus (b) using the mean across available items. After describing these

two approaches, I will then recommend using the mean across available items.
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Listwise Deletion Cutoffs. When calculating scale composite scores for multi-item survey scales, it is

relatively common practice to drop respondents from the analysis for a particular construct if they

fail to respond to (approximately) half (or more) of the construct’s scale items. This practice is

widely taught in research methods graduate seminars, and has even been advocated by missing data

experts (e.g., Graham, 2009, said, ‘‘forming a scale score based on partial data will be acceptable [a]

if a relatively high portion of variables are used to form the scale score [and never fewer than half of

the variables], p. 565).’’

This commonly recommended practice—dropping construct scores if an individual fails to

respond to at least half of the items for the construct—is nonetheless arbitrary, and it has the dama-

ging effect of converting item-level missingness into construct-level missingness, by deleting actual

data from respondents who do not finish at least half of the items for a particular construct. In other

words, the practice of dropping respondents’ construct scores when they do not complete most of the

scale items violates the principle to use all the available data, and as such this practice is a particular

form of item-level listwise deletion. I label this approach listwise deletion cutoff because a cutoff

point (usually half of the items on the scale) is used to decide whether to delete the respondent’s

construct score.

Mean Across Available Item(s). A second approach is to calculate an individual’s scale score for a

multi-item scale by simply using the items that are available for that individual. This is like the prac-

tice that Roth, Switzer, and Switzer (1999) recommend, which they referred to as ‘‘mean substitution

across items (and within an individual)’’ or ‘‘meanperson imputation’’ (pp. 214, 222; also see Downey &

King, 1998), although using the technique as I am describing it here (averaging across the subset of

scale items with available responses for each person to calculate each person’s scale score) does not

technically involve any imputation (i.e., at no point am I replacing any missing values with a ‘‘good

guess’’).

Choosing Between Listwise Deletion Cutoffs versus Using the Mean Across Available Items. When making a

choice between the aforementined two strategies for addressing item-level missing data, one must

attempt to choose the lesser of evils (neither approach is ideal). Both techniques work better when

the items on the scale are parallel (Newman, 2009; that is, when scale items are approximately inter-

changeable and do not have grossly differing means or factor loadings), as well as when the available

items are good representations of the content domain and when Cronbach’s a is relatively high

(Graham, 2009). Also, when an individual has responded to most of the scale items, then the two

techniques (using mean across available item[s] and listwise deletion cutoffs) are identical—the

difference between the two approaches only affects the rarer cases, for whom the number of avail-

able items (for an individual) falls below the listwise deletion cutoff. In other words, the listwise

deletion cutoff method is a special case of the mean across available items method—the available

items are being used in both methods, except that the former method opts for listwise deletion

when the item-level response rate is low (i.e., it has a cutoff).

Strictly speaking, when using the mean of available items method, then an individual’s answers to

item(s) should be used to represent that individual’s construct score, even if the individual responds

to only a single item from the scale. This is what I mean by the phrase one item is enough for cal-

culating a scale composite score for individuals who have item-level missing data. The alternative is

to discard this person’s data from the analysis altogether (i.e., the listwise deletion cutoff method),

which is less defensible on theoretical and ethical grounds and—as I discuss next—is typically less

defensible on statistical grounds as well.

Importantly, neither one of these two techniques for dealing with item-level missingness is

unbiased under MAR or MNAR, and it is not clear that one technique is more biased than the other.

Thus, the choice between the two approaches to item-level missing data must be made using another
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criterion. In particular, I recommend distinguishing between these two options based on statistical

power (i.e., avoidance of Type II error).

Item-level missing data harms statistical power under both alternative methods, but in different

ways and to differing degrees. For the listwise deletion cutoff method, the researcher is discarding

individuals from the analysis, which impairs power by reducing the sample size. For the mean of

available items method, the fact that individuals with fewer item responses are still included in the

analysis means that those individuals’ scale scores are less reliable on average due to their use of

fewer items (see Spearman-Brown prophecy formula—having fewer items leads to lower reliability

of the scale composite score). The inclusion of individuals who are using a smaller number of items

(and thus who have less reliable measures) then attenuates the observed effect size (e.g., correlation),

which in turn also reduces statistical power. (Recall that listwise deletion cutoff methods will also

bias the observed effect size whenever the item-level missingness is not MCAR.) So item-level

missingness harms statistical power, regardless which technique is used (listwise deletion cutoffs

vs. mean across available items). Because a thorough treatment of this issue is unfortunately beyond

the scope of the current review, I will suffice to say that the statistical power compromise caused by

dropping respondents (listwise deletion cutoff method) is, under typical conditions, worse than the

statistical power compromise caused by including partial respondents who only answered a subset of

the items (mean of available items method)—even under the extreme case when only one item has

been answered. As a result, I recommend the use of the mean of available item(s) method, and I dis-

courage the commonly used listwise deletion cutoff method. Both methods tend to suffer bias under

MAR and MNAR missingness mechanisms, but the mean of available items method typically offers

greater expected statistical power.

Extreme Items. One final issue with item-level missingness involves the possibility that some items

with missing data are extreme items—namely, items with especially high or low endorsement rates,

compared to the other items on the multi-item scale. For the most part, these items are a rarity on

validated scales, and differential missing data on these items is an even greater rarity; so extreme

items will be unlikely to make a practical difference in the vast majority of data analyses. For those

rare scales on which extreme items do exist, I provide advice for dealing with missing data on

extreme items in Appendix B.

Guideline 5: Person-Level Missingness: If the Response Rate Is Below 30%, Report
Systematic Nonresponse Parameters and Consider Conducting Sensitivity Analyses

As shown in Tables 2 and 3, there are available missing data treatments (ML and MI techniques) that

are unbiased under MAR (systematic) missingness mechanisms. However, person-level missingness

cannot be MAR. This is because the MAR mechanism requires that the probability of missing data

be predictable by observed variables, and for individuals with person-level missingness, there are no

observed variables. This is a big problem because state-of-the-art missing data treatments (ML and

MI) were designed to be unbiased under MAR missingness, and therefore the advantages of these

techniques over listwise and pairwise deletion disappear in the case of person-level missingness.

As mentioned previously, this situation makes person-level missingness quite difficult to handle,

because we have no available missing data techniques that can yield unbiased parameter estimates.

For facing person-level missingness (i.e., high nonresponse rates), there are no great guidelines I

can offer that are able to root out missing data bias and error. The best option for researchers facing

person-level missingness at this point is to attempt to report all the relevant information that might be

useful for aiding future readers in understanding the degree of nonresponse bias likely present in a

particular set of results.
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If the response rate is especially low (below 30%), then the researcher should attempt to provide

information that can be used to gauge the likely amount of missing data bias in the parameter esti-

mates. Because missing data bias is a function of the response rate and the systematic nonresponse

parameters (rmiss;x; see Newman & Cottrell, in press, and Equation 1), researchers with especially

low response rates should provide three pieces of information:

1. Report the overall response rate (i.e., [n full respondents þ n partial respondents] / n con-

tacted; see Equation 2). (This advice was also given as part of Guideline 3.)

2. Report the systematic nonresponse parameters (e.g., rmiss;x, rmiss;y) pertaining to each substan-

tive variable in the study, if possible.

According to Newman (2009), systematic nonresponse parameters (SNPs) capture the difference

between respondents and nonrespondents on the variables of interest in a particular study. For exam-

ple, Newman and Sin (2009) provided an expression for an SNP called dmiss:

dmiss ¼ ð �Xnonrespondents � �XrespondentsÞ
�

spooled ; ð9Þ

which can be equivalently expressed as:

rmiss; x ¼ dmiss

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

miss þ 1=pð1� pÞ
q

; ð10Þ

where p is the response rate.

These SNPs can be used to index whether the person-level missingness mechanism is random

(MCAR; where rmiss,x ¼ 0) versus systematic (MAR or MNAR; where rmiss, x 6¼ 0). The closer the

missingness mechanism is to completely random (MCAR), the less concern there is about missing

data bias in one’s results.

As an example, Newman (2009) has quantitatively summarized a few studies of survey

respondent-nonrespondent differences conducted by Rogelberg and colleagues (Rogelberg et al.,

2003; Spitzmuller, Glenn, Barr, Rogelberg, & Daniel, 2006), to estimate that the average systematic

nonresponse parameter is approximately dmiss ¼ –.40 (rmiss;x � –.2) for variables like perceived fair-

ness, conscientiousness, and agreeableness personality traits; and dmiss ¼ –.14 (rmiss;x � –.07) for

variables like job satisfaction/attitudes, perceived organizational support, and turnover intentions

(although for turnover intentions, dmiss has a positive sign). That is, this initial evidence suggests that

survey respondents tend to be more satisfied, feel more supported, and have lower turnover inten-

tions than do survey nonrespondents (suggesting weak systematic missingness for job attitudes and

behavioral intentions); but respondents also tend to have much higher fairness perceptions, con-

scientiousness, and agreeableness than nonrespondents (suggesting stronger systematic missingness

for personality traits and justice perceptions).

Comparing these tentative estimates of rmiss;x (which are relatively small and primarily have

the same [negative] sign) against Figure 5, the conclusion can be drawn that personality-attitude cor-

relations and personality-behavioral intentions correlations often suffer fairly small amounts of

missing data bias due to person-level missingness (i.e., due to low response rates), whereas

attitude-attitude correlations and attitude-behavioral intentions correlations suffer even smaller and

near-zero missing data bias due to person-level missingness. Altogether, these early results for sys-

tematic nonresponse parameters (rmiss;x) support the approximate viewpoint that missing data bias

due to person-level missingness (i.e., low response rates) is typically small or negligible, and tends

to produce underestimation of the relationships among constructs. To restate the previous guideline,

because the expected amount of nonresponse bias due to person-level missingness will depend on

which substantive constructs are being studied (e.g., nonresponse bias will be higher for studies

of conscientiousness and justice perceptions), researchers should attempt to report data on
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respondent-nonrespondent differences (rmiss;x) for each substantive construct being studied. These

estimates will usually need to come from other, nonlocal studies that have compared respondents

against nonrespondents (e.g., Rogelberg et al., 2003; Spitzmuller et al., 2006; see Newman, 2009).

3. Where possible, conduct response rate sensitivity analyses by estimating the response rate–

corrected correlations using Equation 1.

When the key inference from one’s study relies on a particular correlation or a particular set

of relationships among three variables (e.g., a mediation test), then it would be useful to calculate

response rate–corrected versions of these two or three important correlations (using Equation 1;

Newman & Cottrell, in press). That is, the rmiss;x values collected in response to the aforemen-

tioned recommendation can then be plugged into Equation 1 to yield response rate–corrected cor-

relation estimates. (Note that for the common case where rmiss;x is unknown, one can simply try a

realistic range of rmiss;x values—I recommend using rmiss;x values between 0.0 and –0.2, consis-

tent with Newman’s [2009] small-scale review, described previously. Also note that Equation 1

requires the response rate for a given study to be transformed into a u2 estimate; Newman & Cottrell,

in press.)12 These corrected correlation estimates from Equation 1 can then be used to perform a sim-

ple response rate sensitivity analysis to demonstrate that the study’s key result (e.g., a bivariate cor-

relation or a mediation parameter13) still obtains even after making rough corrections for the low

response rate.

Such simple sensitivity analyses are primarily useful because they help to indicate the direction of

the missing data bias due to person-level missingness (i.e., Is the parameter of interest likely to be

underestimated vs. overestimated due to the low response rate?). I surmise that a large portion of

effect sizes in the psychological literature are likely to be underestimated—not overestimated—due

to low response rates (see Newman & Cottrell, in press). This surmise is based on the fact that many

of the known rmiss;x estimates in the psychological and organizational sciences are negative (New-

man, 2009; i.e., respondents have more positive attitudes and personalities and lower turnover inten-

tions compared to nonrespondents) and thus have the same sign as each other, which would suggest

that missing data bias typically leads to small negative bias (usually underestimation) of one’s the-

orized parameters (see Figure 5; Newman & Cottrell, in press).

Finally, I note that Guideline 5 is the most tentative of the five guidelines I have presented in the

current article. This is because, to a realistic extent, our science still does not have very good solu-

tions to offer that can address person-level missingness. Guideline 5 is an early attempt to do some-

thing to acknowledge the issue of response rate bias—rather than simply ignoring the problem or

simply rejecting all manuscripts that are based on low response rates. My choice of a 30% response

rate cutoff for Guideline 5 is arbitrary (indeed, nonresponse bias can matter at much higher response

rates too), but it roughly corresponds to the 20th percentile of response rates found in organizational

research (Anseel et al., 2010). The idea here is to present missing data guidelines that are practical

(cf. requiring everyone with less than perfect response rates to conduct nonresponse bias sensitivity

analyses seems impractical, given the nascent state of the current science for precisely estimating

and using the systematic nonresponse parameters [e.g., rmiss;x], which are a necessary part of the sen-

sitivity analyses). As such, Guideline 5 only applies to the most egregious instances of person-level

missingness (when the response rate falls below 30%).

Conclusion

The five practical guidelines offered in the current article are built upon statistical theory (see

reviews by Allison, 2002; Enders, 2001b, 2010; Dempster, Laird, & Rubin, 1977; Little & Rubin,

2002; Newman, 2003; Rubin, 1976, 1987; Schafer, 1997; Schafer & Graham, 2002), but the
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guidelines themselves are practical guidelines and not intended to be statistically exact. That is, I am

offering a set of compromised standards that are midway between current research practice (e.g., in

which listwise and pairwise deletion are routinely implemented) and statistical best practice (e.g., in

which one could likely insist that all data analyses ought to be based on FIML). In an attempt to

propose a set of missing data standards on which most researchers can generally agree, the compro-

mise is that I am only recommending state-of-the-art missing data routines (ML and MI) be used in

those instances when they are likely to make the biggest difference (e.g., when the percentage of

respondents who are partial respondents >10%).

If the five practical guidelines were followed, it would represent a big step forward in the

accuracy with which results are reported in the social sciences (both in terms of less biased effect

size estimates and more accurate hypothesis tests). The decision rules involved in using the five

practical guidelines articulated here are designed for the purpose of assisting researchers who

want to choose the lesser of evils among missing data treatments, under the types of missing data

conditions typically found in the social and organizational sciences. Because the guidelines are a

decision aid, they are forced to somewhat arbitrarily convert a set of continuous phenomena into

a binary decision tree (Figure 1). More research would still be useful on a wide variety of ima-

ginable boundary conditions under which the various missing data techniques might have differ-

ent degrees of relative performance (e.g., under violations of normality [Enders, 2001a; Gold &

Bentler, 2000; Gold, Bentler, & Kim, 2003], small sample size conditions [Graham & Schafer,

1999], nonlinear missing data patterns [Collins et al., 2001; Roth et al., 1999], or in multilevel

models [Mistler, 2013; van Buuren, 2011]). Under the current state of scientific knowledge

(Enders, 2010; Graham, 2009; Schafer & Graham, 2002), though, following the five guidelines

would produce immediate and palpable improvements in the accuracy and believability of

research results. This is because research results would no longer narrowly apply only to indi-

viduals who respond completely to surveys—results would instead generalize to a target popu-

lation including both full survey respondents and partial survey respondents, without introducing

unnecessary bias and error that can be caused by listwise deletion, pairwise deletion, and single

imputation.

Appendix A

Annotated Syntax (in SAS, LISREL, and R) for Maximum Likelihood
(expectation-maximization [EM] algorithm, full information maximum likelihood [FIML])
and Multiple Imputation

For most research projects involving correlation and multiple regression, the following code labeled

‘‘R syntax for FIML and EM algorithm’’ will directly and easily provide all the estimates the

researcher needs (i.e., ML [EM] correlation matrix, ML [EM] means, ML [EM] standard deviations,

ML [FIML] regression coefficients, and ML [FIML] accurate standard errors for significance tests).

Brief description of annotated syntax:
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This appendix provides syntax intended for use with analyses based on covariance/correlation

matrices (i.e., multiple regression, factor analysis, and SEM). The specific examples involve corre-

lation and multiple regression.

Also, when implementing analyses based on an EM algorithm correlation matrix, I recommend

recording the correlations to at least five decimals (i.e., to limit error due to rounding).

SAS syntax:

(A) Listwise Deletion (Multiple Regression)
** This is the SAS default missing data routine for multiple regression, but it is NOT RECOMMENDED
(see Guideline 1).

(B) Pairwise Deletion (Correlation and Multiple Regression)
** This is the SAS default missing data routine for correlation, and it can also be used for multiple regression;
but it is NOT RECOMMENDED UNLESS THE PORTION OF CONSTRUCT-LEVEL MISSINGNESS IS
<10% (see Guideline 3).

(C) EM Algorithm (ML missing data routine) (Correlation and Multiple Regression) The EM algorithm
calculates the covariance/correlation matrix and vector of means.
** This is the RECOMMENDED PROCEDURE for CALCULATING A CORRELATION MATRIX, MEANS,
AND STANDARD DEVIATIONS. One can also conduct multiple regression using the EM covariance/
correlation matrix.
** This provides least biased regression coefficients, but SEs are still inaccurate (no single sample size makes
sense for the entire correlation matrix). So if this technique is used for hypothesis testing, conservative
minimum-N procedures are recommended to control Type I error (Enders & Peugh, 2004).

(D) Multiple Imputation (MI) (Multiple regression)
** This is a RECOMMENDED PROCEDURE for conducting multiple regression and structural equation
modeling (SEM; use auxiliary variables and relevant interaction terms in the imputation model).

LISREL syntax and R syntax (lavaan R package):

(E) FIML: Full Information ML (ML missing data routine) (Correlation and Multiple Regression)
One can conduct multiple regression using FIML by treating multiple regression as a special case of SEM
(e.g., in LISREL or in R [lavaan package]). Both the LISREL and R syntax provided below use Graham’s (2003)
‘‘Extra DV’’ auxiliary variable method.The ML covariance/correlation matrix and the ML means are also
output by both the LISREL syntax and the R syntax below. These are the exact same as the EM algorithm ML
covariance/correlation matrix and means.
** This is a RECOMMENDED PROCEDURE for conducting multiple regression and SEM (use auxiliary
variables in the estimation model, via the extra DV method [Graham, 2003]).
** This is also the RECOMMENDED PROCEDURE for calculating the CORRELATION MATRIX, MEANS,
AND STANDARD DEVIATIONS (i.e., the ML covariance/correlation matrix and means are the exact same
as the EM covariance/correlation matrix and means).
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SAS, LISREL, and R Syntax for Missing Data Analysis(Multiple Regression and Correlation)
SAS Syntax:
Enter the dataset, using a dot ‘.’ to represent missing data..

*INPUT RAW INCOMPLETE DATA;

data INCOMP; *Label the dataset ‘INCOMP’;
input y x z aux1 aux2 @@; *5 variables—y, x, z, plus 2 auxiliary vars.;
cards;
3.04 3.31 4.32 2.42 3.20     .   2.81 2.41 2.59 2.77    2.32 2.78 2.93 3.28 2.39   
.   1.05  .   2.23 0.85     .   0.31 5.10 0.83 0.37     .   3.51 3.69 2.68  .     
.    .   4.26 1.29 2.34     .   3.07 4.11 3.53 1.27     .   2.27 4.19  .   1.54   
.   4.36 3.41 2.98 2.93     .   2.59 3.74  .   1.45 4.22 3.93 3.49  .   3.10   
.   2.27 3.54 2.68 3.47     .   2.26 4.38 2.00 1.65    4.33 3.78 1.75  .   4.47   
.   2.90 3.29 2.49 2.36     .   1.33 4.47 0.75 2.38    4.98 3.97 2.27 3.56  .     
.   3.61 1.38  .   2.92     .    .   2.00 4.20 2.39 .    .   2.47 3.16 1.78   

4.05 4.84 1.61 5.58 2.56     .    .    .    .   3.76     .   2.81  .   3.81 2.88   
.   3.23 2.69  .   2.88    4.94 2.19 3.62 3.24 3.25    3.16 3.27 2.54  .   3.33   

3.55 3.92 4.62 2.92 3.43    2.69 3.48 1.42 2.51 3.25  .   3.04 5.17 2.11  .     
6.38 3.78 2.87 4.13  .       .    .    .    .   1.73    2.16 3.25 3.28 2.60 2.78   
3.41 2.30 3.45 2.38 3.15     .   3.32  .    .   2.45     .   3.03 4.30  .   1.91   
.   2.57 2.75 2.36 3.03    4.64 5.07 1.10 5.43 4.04   .   3.14 4.24 2.18 2.97   

2.75 3.87 3.01 3.53 2.73    3.32 3.55 2.93  .   2.46     .   3.16 2.34 2.57 2.74   
.    .   2.32 3.66 3.06    5.08 4.02 3.27 4.68 3.26    2.95 2.59 3.53  .   2.76   
.   1.22 3.82 3.59 1.19     .   2.54  .   2.26 1.71    .   2.37 3.15 2.60 2.01   

3.78 3.67 1.15  .   3.32     .   1.80 3.52 2.00 1.71    3.37 2.55 2.56  .   3.97   
.   2.41 2.99 1.48  .      3.18 2.75 2.16 2.74 4.31     .    .   2.57 3.67  .     

3.37 4.21 3.78 2.92 3.72    3.36 2.92 2.98 4.02 2.28     .   0.98 2.68 1.20 3.17   
3.13 3.04 1.25  .   3.02     .   0.10 4.29 0.84 0.20     .   2.92 2.58 3.04 2.37   
.    .   2.14 2.45  .       .    .   4.39 2.50  .      3.01 2.10 1.78 2.32  .     
.    .   3.54 2.63 3.64     .    .    .   1.89  .       . 1.08 3.35 2.09 1.69   

3.79 3.12 3.79 2.78 4.65     .   2.24 1.29 4.25 2.65    2.65 4.19 3.72 2.86  .     
4.67 5.57 1.78  .   3.93    2.65 4.56 1.40 4.25  .      3.60 2.32 2.65  .    .     
2.62 2.76 2.73 2.94 2.69    3.06  .   2.43 4.00 3.61    2.96 3.17 3.48 3.42 2.45   
4.47 3.28 3.16 3.73  .       .   1.24 4.03 2.50 1.06     .    .   3.56 3.19 2.78   
.   3.66 3.85 3.75  .      3.19 3.13 4.35 2.69 2.50     .   3.72  .   1.17 3.93   

2.33 5.21 2.45 4.46 3.59    3.62 4.33 2.18 3.58 4.41     .  2.85 4.14 3.05  .     
.   3.10 2.88 2.79  .      3.00 2.93 3.58 2.33 3.32     .   3.18 3.03 3.15 1.34   
.   2.58 2.42  .    .      3.73 1.88 2.07 3.21 4.10     .   1.00 2.67 2.96 1.51   

3.64 4.50 1.76  .    .       .   2.58 5.27  .    .       .   2.71 3.51 2.11 1.48   
4.27 3.88  .   4.12 3.96    2.45 1.33 4.10  .   2.99     .   4.03  .   5.28  .     
3.20 4.42 2.18 2.61 5.20     .    .   4.06 3.89 2.81    4.55 4.17 2.73 4.91  .     
3.61 4.18 3.85  .   4.02    3.06 3.97 3.13  .   3.39     .   2.28 6.34 0.73 2.11   
.   2.11  .   2.70 2.57     .   3.95  .   1.89 2.86    1.93 3.93 2.73 3.03 3.25   

3.07 2.39 3.40 3.54 2.17     .   1.77 1.69 2.77 3.26    3.46 3.19 3.03 3.70 2.32   
2.62 3.48  .   2.53 3.03     .   1.15  .   1.31  .       .    . 6.13 0.34  .     
3.36  .   2.52  .   2.93    3.19 4.31 2.49  .   4.56    3.09 4.40 2.34 4.39 2.94   
2.36 3.42 2.61 2.95 3.40    4.43  .   1.41 2.46 6.53    3.84 3.26 1.85 3.21 4.10   
3.23 2.35  .   4.60 2.87     .   4.70 3.90 2.80 2.52     .   3.23 3.87 3.51 2.24   
.   3.37  .   2.06 2.76     .   2.01 3.85 2.14 1.77    3.68 3.95 2.90 3.18 3.89   
.   3.65 3.34 1.95 3.43    3.47 3.08 2.63 5.07 2.29     .   2.99 2.25 2.84 3.31   

3.00 5.53 2.35 2.68 5.22    1.98 3.71 2.91 3.86 2.38    3.10 2.80 3.56  .   3.73   
3.00 3.05 3.57 4.28 2.01     .   2.17 3.49 3.06 0.99     .   1.65 3.81 2.40 1.42   
.   2.33 3.35 2.20 2.01    3.14 5.40 3.88 3.59 3.61     .   2.08 3.44 2.96 2.29   
.   2.82 4.15  .   3.15    3.04 3.04 3.31 3.53 2.24     .   3.84 3.40 2.99 2.23   

4.43 3.47 1.10 4.45 3.54     .   2.33 3.59 3.22  .       .    .   3.38 2.52 3.04   
.    .   3.26 3.22 1.85    3.80 2.59 3.70  .   3.45    3.77 3.73 2.38 2.68 4.63   

3.56 3.24 3.09 3.56 3.43     .   2.79 3.59 3.17 2.55    3.88 3.73 1.52 4.68 3.10   
.   2.04 3.48 1.95 2.06     .   2.78 4.91 2.63  .      4.18 3.68 2.86 3.25 4.10   

4.31 3.41 2.65 3.58 3.53     .    .    .    .   1.81     .   3.48 2.16 3.49 2.76   
3.49 5.13 2.80 3.44 4.27    3.60 0.91 1.58 3.01 2.84     .   3.25 2.92  .   2.06   
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.   1.78 1.34 2.07 3.09    2.04 3.15 3.68 1.93 3.38     .   2.22 5.38  .   1.19   
3.47 2.38 2.21 3.09 3.49     .   2.40 2.83 2.51 1.75     .   2.29 2.11 3.13 3.79   
.   3.45  .   3.20 3.27     .    .   2.53  .   3.29    4.51 3.78 1.99  .   3.07   

2.40 1.64 1.74  .    .       .   1.52 3.61 3.77 0.75     .   2.30 2.04 2.27 4.18   
.   3.19 3.41  .   2.28    3.67 3.21 3.55 1.99 4.18    3.18 4.88 1.37 4.27 3.84   

4.82 4.93  .   4.64 5.31    5.07 3.05 2.30 4.30 4.14    2.95 3.65 4.61 2.15 3.28   
2.83 3.31 5.37  .    .       .   1.04 3.09 2.28 2.33    3.38 0.84 3.10  .   1.50   
.   1.61 1.70 2.80 1.71    4.20 2.56 2.48 3.91 3.44    3.41 3.03 2.43 3.51 3.13   

3.35 4.13 1.99  .   3.50    1.87 3.18 2.98 1.81 3.71    3.21 3.06 1.86 2.93 4.20   
3.15 3.60 1.52 4.54 3.03    3.49 3.30 3.90 3.71  .       .   2.60 3.63 1.94  .     
2.75 4.33 2.49 2.92 3.66    3.25 2.99  .   3.51  .      3.11 3.45 2.46 5.38 1.92   
3.62 4.37  .    .   3.31    3.09 3.00 3.42 3.46 2.20    3.92 3.36 4.32  .   3.17   
.   3.19 1.94  .   3.15     .    .   3.25 1.39 3.14     .   2.61 4.49 1.17 1.09   

3.03 2.93 2.24 2.53 2.81     .   2.41 2.82 1.51 3.81     .   2.75 2.56 3.16 2.56   
.   2.26 4.38 2.50 2.52     .    .   2.12 2.59 1.96    3.02 1.61 3.12 1.39  .     
.   1.31 3.61 1.12  .       .   3.23  .   1.68 2.81     .   3.00  .   2.26 4.70   
.   2.44  .   2.78  .       .   3.38 4.94 2.77 1.82     .   2.20 3.10 1.42 2.93   

2.51 3.13 3.13 2.55 3.54    2.53 3.11 1.24 1.97 4.05    2.92 2.85 2.74  . 2.53   
3.62 2.54 2.85 3.57 2.71     .   1.89 2.87  .    .       .   2.28 4.71 1.95 1.80   
5.07 3.91 2.25 3.88 4.63    2.90 3.19 3.58 2.68 2.94    4.24 3.63  .   2.94 4.72   
3.81 1.62 2.58 3.50  .       .   4.03 3.17 2.14 3.53    2.54 2.60 2.95 3.03 .     
3.85 2.44 2.02 3.96 3.09     .   1.90 3.17  .   2.12    3.11 1.93 2.99 2.29 2.66   
3.01 2.40 3.80 3.59 2.24     .   2.49 3.45 2.45 2.51     .   2.12  .    .   2.57   
3.43 4.48 1.11 3.96 3.92     .   1.31 2.96 2.25 2.42     .    .   3.89  .   2.58   
.   2.40 4.08 1.47 2.82     .   3.14 3.05 3.20 2.46     .   4.42  .    .   3.35   
.   3.10 3.57 2.44 3.00     .   3.24 4.18  .   2.38    4.42 2.75 4.05 3.19 2.67   
.   2.42 2.93 0.90 2.82    5.18 5.48 2.09 5.25 4.64     .   1.80 4.58 2.09 1.68   
.    .   2.28 2.75 3.86    4.27 1.10 2.98 2.03 4.20     .    .    .   4.74 3.54   

3.57 5.21 3.06 3.42 4.34    3.00 0.80 2.90 2.06 2.99     .   3.64  .   2.74  .     
3.95 3.26 2.65 3.76 3.60     .    .    .   3.67 3.90    3.32  .   3.69 3.65 2.82   
3.40 4.60 3.08  .    .      4.75 3.00 2.89 3.73  .      2.79 2.73 1.60 2.97 3.18   
.   2.20 2.44 2.65  .       .   2.53 3.34 2.28 2.53    5.15 2.83  .   5.73 3.63   
.   2.41 3.36 2.93 3.12     .    .    .   2.08 1.98    3.94 4.39 1.99 4.10 3.47   
.    .   2.69 2.58 2.12     .   2.77 2.48 1.93 2.15     .   2.51 3.33 2.75 2.53   

4.42 2.31 1.69 3.30 3.66     .   2.25 4.53 2.51 1.96     .    .   4.48 1.39 2.86   
3.26 3.39 3.47 2.59 4.07    3.18 4.08 0.98  .   3.91     .   2.48 4.43 2.51 2.54
.   2.10  .   1.87 3.07     .   3.92 4.31 2.25 3.25    3.32 3.33 3.24 3.75 1.86   
.   2.74 3.67 2.43 2.08     .   3.65 4.56 2.19 2.73    4.61 3.91 2.10 4.14 4.55   
.   1.69  .   2.43 3.31     .   2.81 2.78 3.77 1.91    3.51 3.11 2.46 3.28 4.08 

4.51 2.01 2.36 4.88  .       .   3.98  .   2.97 2.12     .   2.93 3.54 2.58  .     
.    .   2.86 2.52 3.24    3.00 3.35 1.68 3.93 3.49    3.93 4.58 2.61 3.58 4.29   

3.87 2.60 3.24 4.10  .       .   2.33  .   1.57 2.19    2.76  .   2.19 3.63 2.60  
2.92 4.10 1.90  .    .      5.42  .   2.93 4.12 3.13     .   1.44 3.29 2.14 2.86   
.   1.34 2.63  .   3.46     .    .   5.05 1.54 1.98    2.49 3.26 2.95 4.22  .     

3.09 2.10 3.60 1.65  .      4.60 4.17 1.04 5.45 4.00     .    .   2.53 3.71 2.40   
4.46 3.69 0.79 3.29 5.20    1.66 2.85 2.07 2.83 2.64    3.72 2.52 2.11 2.88 4.71   
.   2.78 2.78 3.16 2.87     .   1.34 6.48 0.61 1.40    5.06 3.62 4.48 3.45 3.95   

3.53 3.19 1.83 3.50 3.77     .   3.92 4.38 3.19 2.40     .   1.76  .   0.59 3.20
;

proc print data=INCOMP; run; *Check that the dataset was entered correctly;

(A) Listwise Deletion

*LISTWISE DELETED MULTIPLE REGRESSION;

Proc reg data=INCOMP; *Use incomplete dataset ‘INCOMP’ entered above;
model y = x z/STB; *Estimate regression model with 2 predictors;
run;
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*PAIRWISE DELETED MULTIPLE REGRESSION;

proc corr data=INCOMP outp=PAIRWISE;  *Create Pairwise Deleted corr. matrix;
var y x z aux1 aux2;
run;
proc print data=PAIRWISE; run; *Display Pairwise Deleted correlation matrix 
and variable means, SDs, and pairwise sample sizes;

Proc reg data=PAIRWISE (type=CORR); *Input Pairwise Deleted corr. matrix;
model y = x z/STB; *Estimate regression model on pairwise-
deleted corr. matrix;
run;

(C) EM Algorithm
(gives ML estimates, but conservatively uses minimum N for hypothesis testing)

* EM ALGORITHM MULTIPLE REGRESSION, USE SUBSTANTIVE MODEL VARIABLES (Y, X, & 
Z) AND AUXILIARY VARIABLES (Aux1 & Aux2);

proc mi data=INCOMP nimpute = 0 seed = 51075 simple;
var y x z aux1 aux2;
em outem = EMCOVS; *Create EM Algorithm covariance matrix;
run;
proc print data=EMCOVS; run; *Display EM Algorithm covariance matrix and 
vector of variable means. To get EM correlation matrix, look at Proc Reg 
EMCOVS statement below;

*Use minimum N with the EM covariance matrix, for Type I Error protection 
(Enders & Peugh, 2004). This involves setting N for the EM cov. matrix to 
minimum pairwise N (in the current example, minimum N = 146);
Data N_for_EMCOVS; 
input _TYPE_ $ y x z aux1 aux2;
cards;
N 146 146 146 146 146
;

Data EMCOVS_N; set EMCOVS N_for_EMCOVS; run;
Proc reg corr simple data=EMCOVS_N (type=COV); *Input EM covariance matrix, 
and also display EM correlation matrix, means, and SDs;
model y = x z/STB; *Estimate regression model on EM 
algortithm covariance matrix;
run;

(D) Multiple Imputation

* MULTIPLE IMPUTATION, USE SUBSTANTIVE MODEL VARIABLES (Y, X, & Z) AND 
AUXILIARY VARIABLES (Aux1 & Aux2);

proc mi data=INCOMP nimpute = 40 seed = 51075 out = IMPUTED noprint; *Creates 
40 imputed datasets, and saves them to a file called ‘IMPUTED’;
var y x z aux1 aux2;
em outem = EMCOVS; *Proc MI routine automatically provides EM algorithm 

(B) Pairwise Deletion
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covariance matrix;
mcmc nbiter = 100 niter = 100; *Specify number of burn-in iterations (nbiter) 
and number of iterations between imputations (niter, see Enders, 2010);
run;
proc sort data = IMPUTED; * Sort data by imputation, from 1 to 40;
by _Imputation_;
run;
* ESTIMATE REGRESSION MODELS;

proc reg data = IMPUTED outest = regparms covout noprint; *Input 40 imputed 
datasets, and run regression on each of the 40;
model y = x z/STB;
by _Imputation_;
run;
proc print data=regparms; run;  * Display regression results from each of the 
40 imputations;

proc mianalyze data = regparms; * Combine regression coefficients and SEs;
modeleffects intercept x z;
run;
* MULTIPLE IMPUTATION PROCEDURES PROVIDE UNSTANDARDIZED REGRESSION 
COEFFICIENTS. TO OBTAIN STANDARDIZED REGRESSION COEFFICIENTS, MULTIPLY EACH 
UNSTANDARDIZED COEFFICIENT BY SDX/SDY, WHERE THE SD’S ARE TAKEN FROM THE EM 
ALGORITHM COVARIANCE MATRIX (I.E., SD = SQUARE ROOT OF VARIANCE TERM IN THE 
DIAGONAL OF THE EM COVARIANCE MATRIX); 

*TO GET CHANGE IN R-SQUARED WITH MULTIPLE IMPUTATION;
*If change in (pseudo)R-squared estimate is negative, report as zero; 

proc reg data = IMPUTED outest = regparms covout noprint;
model y = x z; *Estimate regression model with full set of predictor 
variables for which you want the R-squared change;
by _Imputation_;
run;
proc print data=regparms; run; *Display 40 regression results;
data Rsq; set regparms;
if _Type_ = 'PARMS';
MSE=_RMSE_**2; *Calculate and save the full-model mean squared error;
keep _Imputation_ MSE;

proc reg data = IMPUTED outest = regparms covout noprint;
model y = ; *Drop the predictor variables for which you want the R-squared 
change;
by _Imputation_;
run;
data Rsq_without; set regparms;
if _Type_ = 'PARMS'; 
MSE_without=_RMSE_**2; *Calculate and save the submodel mean squared error;
keep _Imputation_ MSE_without;
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data RsqCHANGE; merge Rsq Rsq_without; *Combine the 2 MSE files;
by _Imputation_;
RsqCHNG=1-(MSE/MSE_without); *Compute R-squared change for each of the 40 
imputed datasets;

proc print data=RsqCHANGE; run; *Display R-squared change for each dataset;
proc means data=RsqCHANGE; *Display mean R-squared change across imputed 
datasets;
var RsqCHNG;
run;

(E) FIML (gives ML estimates) 
LISREL Syntax for FIML and EM 
algorithm:

Annotation

FIML Multiple Regression Example, 
Simulated data

da ni=5 no=300 ma=cm mi='9999'

la
Y X Z Aux1 Aux2
ra fu fi
3.04 3.31 4.32 2.42 3.20
9999 2.81 2.41 2.59 2.77
2.32 2.78 2.93 3.28 2.39
9999 1.05 9999 2.23 0.85

…
9999 1.34 6.48 0.61 1.40
5.06 3.62 4.48 3.45 3.95
3.53 3.19 1.83 3.50 3.77
9999 3.92 4.38 3.19 2.40
9999 1.76 9999 0.59 3.20

se
1 4 5 2 3/

mo ny=3 nx=2 ne=3 nk=2 ly=di,fi 
lx=di,fi ps=sy,fr ph=sy,fr ga=fu,fr 
te=ze td=ze al=fu,fr ka=fu,fr

le
Y Aux1 Aux2

lk
X Z

!Label the dataset

!ni=# of variables, no=sample size N, 
cm=analyze covariance matrix
!mi designates the missing data code in 
raw data file (must be numeric; ‘9999’)
!Label the variables

!Enter raw data. This is the same 
dataset used with the SAS example above,
except that the missing data code in 
LISREL is now ‘9999’, instead of the ‘.’
used in SAS

!Only a portion of the dataset is shown
here, to save space

!Select the [5] variables to be used in 
regression analysis, in order [DVs 
first: Y, Aux1, Aux2; followed by X, Z]
!Model statement specifies multiple 
regression with 3 outcome variables (ny 
and ne) and 2 predictor variables (nx 
and nk). Multiple regression is a 
saturated (df=zero) manifest variable 
model [i.e., diagonal factor loading
matrix with factor loadings (ly and lx) 
fixed at 1.0, uniquenesses (te and td) 
fixed at zero, all covariances (ps and 
ph) freely estimated, and all regression
coefficients (ga) freely estimated].
Alpha parameters are estimated to give 
regression model intercept.
!Label the outcome variables. Note that 
the auxiliary variables are modeled as 
Extra DVs (Graham, 2003).
!Label the predictor variables.
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st 1.0 ly 1 1 ly 2 2 ly 3 3
st 1.0 lx 1 1 lx 2 2
pd
ou sc nd=3 AD=OFF

!For manifest variable model, factor 
loadings are fixed at 1.0.
!Display path diagram.
!Display standardized output too, and 
use 3 digits after the decimal.

R Syntax for FIML and EM algorithm:

R is a free software that can be downloaded at http://www.r-project.org/ .
Select Packages > Install package(s) > lavaan . (If prompted, allow R to create a library.)
(The lavaan package in R performs ‘latent variable analysis’ (i.e., SEM), similar to LISREL, 
Mplus, or EQS.)

After opening R, in the R Console window, type in library(lavaan) .
Copy the following syntax, and paste it into the R Console window: 

INCOMP<-matrix(c( #Enter raw data as a matrix, and use a 
3.04,3.31,4.32,2.42,3.20, #comma-delimited format(commas between numbers)
NA,2.81,2.41,2.59,2.77, #similar to a csv file (comma-separated values)
2.32,2.78,2.93,3.28,2.39, #Label the datafile 'INCOMP'
NA,1.05,NA,2.23,0.85, #Use 'NA' for missing data
…
NA,1.34,6.48,0.61,1.40, #Only a portion of the data is shown here,
5.06,3.62,4.48,3.45,3.95, #to save space
3.53,3.19,1.83,3.50,3.77,
NA,3.92,4.38,3.19,2.40,
NA,1.76,NA,0.59,3.20),
nrow=300,ncol=5,byrow=TRUE) #Enter the # rows and # columns in raw datafile

print(INCOMP) #Check that the data were entered correctly

INCOMP<-data.frame(INCOMP) #Treats the data like a spreadsheet table
names(INCOMP)<-c("y","x","z","aux1","aux2") #Name the variables, in order

MODEL <- ' #In lavaan, label the SEM model ‘MODEL’ 
# measurement model #This part is a factor analysis.

AUX1 =~ aux1 #For multiple regression, make the measurement
AUX2 =~ aux2 #model a manifest variable model, which is a 
X =~ x #single-indicator model with factor loadings 
Y =~ y #set to 1.0 and uniquenesses set to zero.
Z =~ z #I use upper-case for latent variables.

# regressions #This part is the structural model (i.e., regression)
Y ~ B1*X + B2*Z #Label the regression coefficients ‘B1’ and ‘B2’
AUX1 ~ X + Z #Use auxiliary variables as Extra DVs (Graham, 2003)
AUX2 ~ X + Z

# residual correlations
Y ~~ AUX1 #Allow all DV residual terms to correlate
Y ~~ AUX2
AUX1 ~~ AUX2

# intercepts #This part gives the regression intercept
y ~ 0 #Set all measurement model intercepts to zero
x ~ 0
z ~ 0
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*RESULTS FROM SIMULATED EXAMPLE;

aux1 ~ 0
aux2 ~ 0
Y ~ B0*1 #Label the regression intercept ‘B0’
X ~ 1
Z ~ 1
AUX1 ~ 1
AUX2 ~ 1

'

RESULTS <- sem(MODEL, data = INCOMP, verbose=TRUE, missing = "FIML")
#Label the results file ‘RESULTS’
#Use FIML for missing data.
#The ‘verbose’ command gives the EM algorithm 
#covariance matrix ‘Sigma’ and the EM means ‘Mu’.

summary(RESULTS, standardized = TRUE) #Get standardized results too

fitted(RESULTS) #Display the ML (EM) covariance matrix and ML (EM) means 
#(this only works for saturated models like the current 
#multiple regression SEM, where df = zero and therefore the 
#fitted covariance matrix is the EM covariance matrix)

cov2cor(fitted(RESULTS)$cov) #Convert ML (EM) covariance matrix into ML (EM) 
#correlation matrix

diag(fitted(RESULTS)$cov)^.5 #Convert ML (EM) cov. matrix into ML (EM) 
#standard deviations (use diagonal of cov.
#matrix)

#If desired, you can change the order in which the variables in the 
#EM correlation matrix are displayed, and round the corr.s to 2 decimals:

round(cov2cor(fitted(RESULTS)$cov[c(4,3,5,1,2),c(4,3,5,1,2)]),2)

Regression Results

Complete
Data:
b (SE),

b (p value)

Listwise
Deleted:
b (SE),

b (p value)

Pairwise
Deleted:
b (SE),

b (p value)

EM
Algorithm:

b (SE),
b (p value)

FIML:
b (SE),

b (p value)

Multiple
Imputation:

b (SE),
b (p value)

Intercept 3.10 (.26),
0 (.000)

3.42 (.35),
0 (.000)

3.45 (.33),
0 (.000)

3.25 (.35),
0 (.000)

3.25 (.30),
0 (.000)

3.25 (.30),
(.000)

X .26 (.05),
.26* (.000)

.10 (.07),

.12 (.180)
.10 (.07),
.13 (.143)

.22 (.07),
.23* (.003)

.22 (.06),
.23* (.001)

.21 (.06),
.22* (.001)

Z –.31 (.05),
–.31* (.000)

–.10 (.08),
–.11 (.197)

–.08 (.07),
–.10 (.239)

–.28 (.07),
–.30* (.000)

–.28 (.06),
–.30* (.000)

–.27 (.06),
–.29* (.000)

R2 .20 .03 .03 .18 .18 .16
N for

analysis
300 132

(listwise N)
146

(minimum
pairwise N)

146
(minimum

pairwise N)

Varies across
variables (from

146 to 264)

Varies across
variables (from
146 to 264)

Note: b ¼ unstandardized regression coefficient, b ¼ standardized regression coefficient, SE ¼ standard error. For FIML,
intercept b0 ¼ alpha parameter from the SEM FIML output, and R2 ¼ l – standardized c (for Y). For multiple imputation,
b1 ¼ b1(SDX/SDY), where SDX and SDY are ML estimates from the EM algorithm. Notice how listwise and pairwise deletion
give strongly biased parameter estimates and significance test results in this example. Also notice how the EM algorithm, FIML,
and multiple imputation yield very similar (essentially identical) parameter estimates (with far less bias). FIML and MI also yield
nearly identical SEs and significance test results (and the EM algorithm approach conservatively uses larger SEs, providing Type
I error protection at least as well as FIML and MI do). Although this one example is not intended to prove the generality of ML
and MI missing data techniques, it does show the expected result under conditions where the missingness mechanism is (at
least partly) MAR—namely, ML and MI techniques outperform listwise and pairwise deletion. Alternatively, under MCAR
missingness, listwise deletion, pairwise deletion, ML (EM and FIML), and MI techniques would all be equally unbiased. For
a more complete set of simulation examples, see Collins, Schafer, and Kam (2001); Enders (2010); Graham (2003); Newman
(2003); Newman and Cottrell (in press); and Schafer and Graham (2002).

Newman 405

 at SAGE Publications on April 27, 2015orm.sagepub.comDownloaded from 

http://orm.sagepub.com/


Appendix B

If items on a scale have widely differing means (e.g., if an item mean [across persons] differs from

the overall composite mean [across items and persons] by more than two standard deviations),

then—for each partial respondent with item-level missingness on an extreme item—use an extreme

item adjustment (i.e., Equation B1).

Dealing With Item-Level Missingness for Scales That Contain Extreme Items

As mentioned previously, item-level missingness is a worse problem if the items on a multi-

item scale are not interchangeable. The key consideration here is whether the set of available

items (i.e., if there is item-level missing data) represents the complete set of items from the

whole multi-item survey instrument (i.e., if there were no item-level missing data). For exam-

ple, if administering a survey of counterproductive work behavior (CWB), the mean for the

item, ‘‘Falsified a receipt to get reimbursed for more money than you spent on business

expenses,’’ is lower than the means for other items on this scale (Bennett & Robinson,

2000, p. 354). The likely potential reasons for this low item mean are that (a) the ‘‘falsified

receipts’’ item represents a more extreme form of counterproductive work behavior (i.e., steal-

ing money) than do many of the other items on the multi-item CWB scale (e.g., lateness, break-

taking, and neglecting to follow the boss’s instructions), so it is only enacted by a small number

of individuals who possess a high standing on the underlying CWB trait, or (b) some respon-

dents do not file receipts as part of their jobs (i.e., the item is not relevant to them). Indeed,

both of these might be reasons that the item is missing—because it is a more extreme manifes-

tation of CWB, respondents will be more reticent to answer the question (the item divulges sen-

sitive information), and because the item is irrelevant to some people’s jobs, they might leave it

blank to indicate that the behavior is not applicable to their jobs.

Because this ‘‘falsified receipts’’ item has a lower mean than the other items on the CWB

scale, the likely consequence of excluding this item from the scale composite score would

be to increase the individual’s scale composite mean CWB score by a small amount. Whether

this small amount of bias due to omitting a low-mean item is negligible depends on: (a) the

portion of respondents who omitted this item, (b) the total number of items on the multi-

item scale, and (c) whether the small positive bias due to omitting a low-mean item was offset

by a countervailing small negative bias due to omitting different, high-mean items. In most

practical scenarios (i.e., real data sets with validated multi-item survey instruments and steps

taken to ensure participant confidentiality), the small bias due to actual item-wise missingness

patterns will be negligible for all practical purposes.

However, for extreme cases where the items on a multi-item scale have highly discrepant

means (i.e., if a scale contains extreme items), I offer the following recommendation. If an item

from a multi-item scale has an observed mean that is two standard deviations away from the

composite score mean, then individuals who are missing that item should have their composite

construct scores adjusted to account for the fact that they are missing an extreme item. This

procedure should take place in three steps. First, tabulate the item means for each item on the

multi-item scale and then calculate the mean and SD of these item means (across items). Sec-

ond, screen the item means to identify any ‘‘extreme items,’’ which are items with a mean that

is more than two standard deviations away from the mean of item means. If no extreme items

are identified, then no composite scale score adjustments are needed. Third, for any individuals

who are missing a response for an extreme item, adjust those individuals’ scale composite

scores using the formula:
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Individual0s adjusted composite ðmeanÞ score ¼ ðEquation B1Þ

Individual0s observed composite ðmeanÞ score ði:e:; with extreme item missingÞ
þ ½item grand mean ðacrosspersonsÞ � overall composite score grand mean ðacross personsÞ�=
total n items on the full-length multi-item scale:

For example, if there is a 10-item scale that contains 1 extreme item, then for any individual who

failed to respond to that 1 item, her or his construct score should be adjusted using Equation B1. This

would involve taking the individual’s mean composite score (across available items) without the

missing extreme item, and adding an adjustment term equal to the missing item’s grand mean (across

persons) minus the scale composite score grand mean (across persons), divided by 10 (i.e., the num-

ber of items on the full-length scale). This adjustment formula is based on a technique that Bernaards

and Sijtsma (2000) called ‘‘two-way imputation,’’ which they recommended for addressing item-

level missingness (although, unlike Bernaards and Sijtsma, 2000, I am not recommending that this

approach be used for imputation or for item-level analyses [e.g., item-level factor analysis]; I am

only recommending the approach to adjust a few individuals’ construct scores as a precursor to

construct-level analyses). In the vast majority of cases, items will not be extreme enough to require

the aforementioned adjustment. The whole point of this particular ad hoc adjustment is that it helps

to address item-level missingness only in those extreme cases where items differ enough for item-

level missingness to practically affect the construct scale score.
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Notes

1. For the current article, I define a population as a group from which a sample is drawn and to which infer-

ences will be made (e.g., all working adults); a sampling frame is the list of all individuals from the popu-

lation who were contacted with a survey invitation (i.e., in organizational research, it is typical to send

surveys to everyone in the sampling frame); and a sample is the group of individuals who responded to

at least part of the survey (i.e., full respondents and partial respondents).

2. As an aside, although one might reasonably define partial respondents with regard to item-level missingness in

addition to construct-level missingness, in the current article and for the sake of developing consistent response

rate reporting standards (discussed in the following sections), I am choosing to confine the partial respondent

terminology to individuals with construct-level missingness. Again, construct-level missingness is a special

case of item-level missingness where an individual fails to respond to all of the items on a multi-item scale.

3. One notable exception is the rare case where the researcher intentionally creates an MCAR planned miss-

ingness mechanism by flipping a coin to determine which individuals will receive different versions of a

survey (Graham, Taylor, Olchowski, & Cumsille, 2006). Such planned missing data designs are sometimes

used when the researcher wants to study relationships among a larger set of questions/variables than the

average respondent wants to answer.
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4. Although missing data bias and inaccurate standard errors (SEs) are two distinct issues, both can affect

Type I and Type II errors of inference. For instance, an underestimation missing data bias in the observed

effect size can lead to low statistical power, just as much as a large SE (e.g., small sample size) can. Alter-

natively, an overestimation missing data bias in the observed effect size can offset a large SE (e.g., small

sample size) by increasing power. The ideal scenario for minimizing Type I and Type II errors is to have

zero missing data bias, accurate SEs, and a large sample size.

5. Note that the selection variable miss is the more general and continuously-distributed version of the binary

dummy variable miss(y) that I previously defined in reference to Figure 3.

6. My purpose in providing Equation 1 is merely to illustrate the factors that determine the magnitude of miss-

ing data bias. I do not intend to suggest that Equation 1 should be used to correct for missing data bias,

because for most applications the local rmiss parameters are not known with adequate certainty to permit

such corrections.

7. Technically, direct range restriction means that data on X and/or Y are missing on the basis of truncation on

the observed values of either X or Y (Thorndike, 1949). Indirect range restriction means that data on X and/

or Y are missing on the basis of truncation on a third variable, Z, which is correlated with X and/or Y (e.g.,

see Equation 1, where miss is the third variable).

8. As seen in Table 2, missing at random (MAR) missing data conditions naturally lead to biased parameter

estimation under listwise deletion, but to unbiased parameter estimation under maximum likelihood (ML)

and multiple imputation (MI) techniques. As such, MAR missingness is a common reason why listwise

deletion results might differ from ML and MI results.

9. The only scenarios where single imputation might be defensible would be for unusual data structures (like

social network data), for which no multiple imputation model nor ML missing data routine is available. For

social network data, for example, it is sometimes defensible to use symmetry imputation (e.g., imputing a

peer’s nomination of a dyadic friendship in place of one’s own missing self-report of the friendship, under

the assumption of reciprocity). This can be a preferable alternative to listwise deletion.

10. For those who speak Bayesian language (see Brannick, 2001; Gelman, Carlin, Stern, Dunson, Vehtari, &

Rubin, 2013; Newman, Jacobs, & Bartram, 2007), multiple imputation approximates a Bayesian posterior

estimate (which is a weighted average of the prior and the likelihood), whereas ML estimation provides the

likelihood. So in the common case of a relatively uninformative prior, MI and ML techniques yield essen-

tially the same results.

11. Collins, Schafer, and Kam (2001) further showed that auxiliary variables can improve missing data estima-

tion even when the auxiliary variables only meet the second condition previously described—being corre-

lated with the partially missing substantive variables of interest—regardless whether the auxiliary variables

are correlated with the cause of missingness.

12. Newman and Cottrell (in press) showed that the variance ratio u2 can be approximated as a function of the

response rate only, under normality assumptions. That is, u2 ¼ 1þ cxz
=pc

ffiffiffiffiffiffiffiffiffiffiffi
2pec2
p

� ð1=p2
c2pec2Þ, where pc

is the response rate, and cxz
is the selection cut-score in standard score (z-score) form, which can be looked

up in a z table in the back of any statistics textbook or approximated using ‘‘¼ - NORMSINV(‘response

rate’)’’ in Microsoft EXCEL.

13. For assessing missing data bias in parameters of a simple mediation model with three variables (X!M!Y),

one can use equations for the regression coefficient as a function of the missing data–corrected correlations.

For example, bx ¼ ðrXY � rMY rXM Þ
�
ð1� r2

XM Þ.
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