
§3_D-efficient_designs.pdf

GENERATION OF D-EFFICIENT DESIGNS

[Accompanying material for: Katrin Auspurg & Thomas Hinz (2015): Factorial Survey Experiments.

Sage Series: Quantitative Applications in the Social Sciences No. 175. Thousand Oaks, CA: Sage]

Material that is provided along with this introduction (§3_material):

 The complete coding to produce the fairness of earnings example

 as an SAS program (also called “SAS job”): SASjob_earningsexample.sas

 as a pdf: SASjob_earningsexample.pdf; this file can also be employed after pasting the
commands into the SAS program editor. The word document might be helpful for readers
who do not yet have experience with SAS or a program license in case they want to get a
quick overview of the coding needed to run the macros.

 The data set that will be produced by the macro is provided in Stata format:
fractionalized120.dta (within the §4_material  Folder “Stata”) and can be used to produce the
text vignettes or to compare the efficiency with alternative random samples (for more
information see §4_material:  §4_vignettetexts.pdf).

3.1 SAS Macros

In the following we give short instructions on how to use the SAS macros for D-efficient experimental

designs and how to interpret the SAS output (some recommendations of other software packages

are given in Section 3.2). Again the fairness of earnings example is used to illustrate the single steps.

A detailed documentation of the macros is provided in Kuhfeld (2010), and readers might also look

for updates on the SAS web pages.

3.1.1 Installation of Macros

Note that at least with the desktop version of SAS all codes will work only if you first installed the

relevant macros, as these are not part of the core package of SAS but are user-written packages

(author: Warren Kuhfeld). The macros are available for free on the official website of SAS.1

“Installing” entails no more than downloading the packages into the right program folder (where all

macros have to be placed). For more details see Kuhfeld (2010) or the information on the SAS

website.

3.1.2 Programming Editor and %Mktex Macro

Once the macros are installed, one can use them within the standard SAS programming editor. The

default setting is that all data files that are produced (like the file containing the D-efficient vignette

1
 http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html  Folder “Macro Code (ZIP)”

[last time visited: September 30, 2014]. When working with web-based SAS versions, like SAS on demand or the
SAS student version, one should check in advance if the macros are available. In our experience it is possible to
use them in current versions (last check: September 2014) of SAS on demand, but not with the student version
(as the macro builds upon some tools not provided with this program version). However, once again we
recommend checking the SAS website for up-to-date information.

http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html

sample) are stored into the “Work-library” as part of the working memory – meaning all these files

are lost when exiting the program. One has to export them to another library before exiting or, even

better, specify another library as a working directory using the LIBNAME command (LIBNAME path

to working directory).

Using the macros is easy as one does not need much programming code.2 The following code would

be sufficient to start an algorithm search for a D-efficient fraction of 120 vignettes (“runs”) with an

orthogonalization of some specific two-way interactions out of a 3²2³4²-full factorial (i.e. a vignette

universe built up from seven different dimensions: two dimensions with three levels, three

dimensions with two levels, and two dimensions with four levels).

%mktex (3 3 2 2 2 4 4, interact x1*x2 x1*x3 x5*x6, n=120);

%mktex calls the macro, and within the parentheses the desired design specifications are given. The

numbers indicate the levels for all seven dimensions. Detailed options, like the interactions one

wants to orthogonalize or the desired size of the sample (“design”; in this case: N= 120 vignettes),

are separated by commas, while the semicolon denotes the end of the command. In the example,

beneath the main effects the two-way interactions between the 1st and 2nd, the 1st and 3rd, and the

5th and 6th dimensions will get orthogonalized (i.e. in the sample not only all dimensions but also

these interaction terms will show minimal correlations and multicollinearities with each other as well

as with the main effects of dimensions, meaning that later on in data analyses the effects of all these

parameters will be identifiable).3 To request a Resolution V design (i.e. orthogonalization of all two-

way interactions), one could simply use the subcommand interact=@2 instead:

%mktex (3 3 2 2 2 4 4, interact=@2, n=120);

It is possible to specify further options, like the maximum search time the algorithms should take or

a minimum (satisficing) D-value that has to be reached.4 The search process used by the algorithms

has some randomness built in. To make it replicable one has to specify a starting number that is

used; otherwise the computer’s real time clock (which is the default) will be used. This starting

number can be set with the option “set seed = number”, with “number” being any number one might

choose (for an example using “815” as a seed see Section 3.1.3). Note that when not using this

option, you will always get a somewhat different design when the macro is re-run. We recommend

using the option, as replicability is a desirable feature of all research designs. Kuhfeld (2010) gives

thorough explanations for additional options of these macros and related macros (which allow one,

for instance, to look for the minimum numbers of vignettes that are needed to build up the desired

design).

2
 Or as Kuhfeld frames it: “just tell it [the %mktex-macro] what you want, and it figures out a good way to do it

[…]. This macro should always produce a very good design with minimal effort for even the most
unsophisticated users” (Kuhfeld, 2010, p. 1018). However, as explained in detail in our textbook, one should be
very careful when selecting the design features (like parameters that should be identifiable) and always
thoroughly check the resulting design before going on with field work.
3
 In order to estimate the effects, there also have to be enough valid ratings for all of the vignettes in the

sample; see Chapters 3 and 5 of the textbook.
4
 Which will, however, rarely be necessary as standard designs are produced within a few minutes.

3.1.3 Exclusion of Implausible and Illogical Cases

Implausible or “bad” cases have to be excluded before running the %mktex macro from the

candidate set for the sample. This is done by first specifying these cases in a container (which is

labeled “impl” in the following sample code, but one might just use any name), and then using the

option “restriction=containername” in the %mktext macro. For instance, one can exclude the joint

occurrence of the first level of dimension 1 with the second or third level of dimension 2 by running

the following commands:

* specification of the restriction (i.e. the cases to be excluded);

%macro impl;

 bad = x1=1 & x2 > 2

 %mend;

*Generation of the D-efficient design under this restriction of

excluding the ‘bad’ cases;

%mktex (3 3 2 2 2 4 4, restrictions = impl, interact=@2, n=120, seed =

815);

3.1.4 Information Provided in the SAS Log and Output Windows

When running the macro, summary information on the search process and its success is provided

within the SAS log window (see the log file shown in Figure 3-1; for more detailed information, see

Kuhfeld, 2010, p. 1017 et seq.). It starts with some information on the initial candidate set used for

the algorithms. This candidate set can have more observations (“runs”) than are requested for the

final design. The further lines inform us about the number of algorithm search steps for better

designs, the size of the full factorial, and finally the two output data files that are produced. The file

“RANDOMIZED” (which is here simply stored into the working directory (“WORK”) as no other library

was specified) displays the different vignette cases in a random order; the file “DESIGN” contains

exactly the same sample but without random vignette sorting. Lastly, the time the macro needed to

create these data sets is shown. In our experience, for common FS designs and using the high

working memories of current PCs, it will rarely take the macro more than ten minutes to find an

optimal design.

Figure 3-1 Sample of a SAS Log File

Sometimes the macro does not come to a result or does not even start; when this happens you will

find error messages in the log file that elucidate the reason. The most likely reason for the macro not

working is probably that you specified not enough vignettes to make it possible for all the desired

parameters to be orthogonalized (message: “More parameters than run”). Other messages, in

contrast, do not stop the macro and are in general no problem as far as the macro comes to a final

result (which means that a table with efficiency measures is shown in the output window, as

described below). For instance, in the case of strong restrictions to the design, like the exclusion of

many implausible cases, one often gets the “NOTE: The candidate set initialization failed”. However,

the macro is still able to continue and produce a meaningful vignette sample.

In addition, more detailed information on the search process is provided in the SAS outcome

window (also called the Result viewer). Here the different algorithms used by the macro and the

search history are documented. For instance, in the example shown in Figure 3-2 the first algorithm

used is the “PROC OPTEX” procedure based on the “Fedorov algorithm” that exchanges data rows

(“runs”) of the candidate set and keeps them in case they improve D-efficiency. After that initial

algorithm other ones are used that, for instance, check whether swapping the levels of the design

can further improve the D-efficiency. Next, it reveals which of the different algorithms worked best in

terms of D-efficiency. Finally, based on this approach, the macro attempts to enhance D-efficiency

even further by using more iterations and further level mutations (“refinements”). The output of this

search and refinement history is organized in tables, as can be seen in the record of the start of the

search history for our earnings example displayed in Figure 3-2. Each “Design” number (see the first

column) corresponds to a complete iteration, based on a different initialization. In columns two to

four the initial and final efficiency of each iteration step is shown. The “Best D-Efficiency” column

only states those D-efficiency values that outperform prior ones, while “Notes” provides details on

the algorithms that were used. In addition, when working with restrictions (such as cases that should

get excluded) this column displays the note “conforms” once a design first conforms to the

restrictions (a detailed list on further possible notes and their meaning can be found in Kuhfeld,

2010, p. 1054).

Figure 3-2 SAS Output in the “Results Viewer” (First Lines of Search History)

At the end, when everything worked well and the algorithm converged at an optimum D-efficiency

value, the “PROC OPTEX” procedure is automatically activated, which means that the levels of all

dimensions (“factors”) and the final D-efficiency get displayed, as can be seen in Figure 3-3.

Figure 3-3 SAS Output in the “Results Viewer”: Information on Final Design

In our example, a D-efficiency value of 90.55 is reached. Keep this information on D-efficiency! It is

one parameter that one should report to inform readers on the employed sample in a study. You can

just save a log of the output window (see the options provided after a right click on this window) or

copy the table and paste it into another document, such as a text document. In the table, some

alternative efficiency measures are also shown. However, as indicated, we recommend that

D-efficiency is the focus, as this measure is the most common and flexible one (i.e. it is not

dependent on the coding used for the dimensions). As already mentioned, the final vignette sample

that holds this efficiency is provided in the dataset “Design” (with using numeric codes for the

different levels of the seven different vignette dimensions, which are labeled “x1” to “x7”). In

addition, the same dataset but with a randomized order of the vignettes (“runs”) is provided (dataset

“Randomized”). All these datasets can be found in the current working directory (which is the library

“Work” if no other library is specified).

3.1.5 Blocking Vignettes to Decks

When running the %mktblock macro afterwards, the design gets allocated to different decks (here

called “blocks”), again orientated toward a maximum orthogonality and level balance within the

single decks (blocks). The following code can be employed to split our sample of 120 vignettes into

six different decks of 20 vignettes each (the macro will automatically work with the dataset in use,

which is still the D-efficient sample of 120 vignettes as long as no other dataset was opened in the

meantime):

%mktblock (nblocks = 6);

In contrast to the former data sets, the resulting dataset “Blocked” also contains an indicator variable

(“block”) for the six different decks. Additional data files are automatically produced and stored in

the same library (“Work” if no other library is specified). These files provide some statistical

information on the sample and decks (e.g. they contain matrices of the frequencies of different levels

and correlations between dimensions). Similar information is also provided in the output window.

3.1.6 Exporting Data to Other Data Formats like Stata

All files can simply be exported to other statistical packages such as Stata or SPSS (see the

instructions after a right click on the data files), but you will probably only need the Blocked-data (or

Randomized data if not working with fixed decks) as all statistical information (like correlation tables)

can easily be produced with other statistical software packages and is probably more economically

stored in output windows than in separate data files.

3.2. Further Software Tools

In addition to the SAS macros, the Ngene software for designing choice experiments and the Conjoint

Value Analysis (CVA) module of the Sawtooth program provide very comprehensive tools for the

construction of optimal experimental designs, while there are also some user-written packages for

the freeware software package R that allow searches for D-efficient designs (like the AlgDesign

package written by Bob Wheeler; see Wheeler 2004). Learning how to use these programs should be

no challenge for any researchers who are already familiar with syntax commands in statistical

software packages. As there is always a lot of programming work going on, readers might also check

themselves if even more sophisticated packages have become available. A website collecting

information on enhancements and R packages for experimental designs can be found at

http://cran.r-project.org/web/views/ExperimentalDesign.html (last visited in April 2014).

References:

Kuhfeld, W. F. (2010). Marketing research methods in SAS. Experimental design, choice, conjoint and
graphical techniques. SAS Institute: Cary, NC.

Wheeler, R.E. (2004). efficient.rounding. AlgDesign. The R project for statistical computing.
http://cran.r-project.org/web/packages/AlgDesign/AlgDesign.pdf; last visited: October 2014).

http://cran.r-project.org/web/views/ExperimentalDesign.html
http://cran.r-project.org/web/packages/AlgDesign/AlgDesign.pdf

