Table 1.1 Example of the Format of a Data Set From a Survey of 20 College Students

ID Number	Gender	Age	College Year	GPA	Average Month		Religion
					\# Drinks	\# Times Drugs Used	
1	Female	19	Sophomore	2.3	45	22	Catholic
2	Male	22	Senior	3.1	30	10	Other
3	Female	22	Senior	3.8	0	0	Protestant
4	Female	18	Freshman	2.9	35	5	Jewish
5	Male	20	Junior	2.5	20	20	Catholic
6	Female	23	Senior	3.0	10	0	Catholic
7	Male	18	Freshman	1.9	45	25	Not religious
8	Female	19	Sophomore	2.8	28	3	Protestant
9	Male	28	Junior	3.3	9	0	Protestant
10	Female	21	Junior	2.7	0	0	Muslim
11	Female	18	Freshman	3.1	19	2	Jewish
12	Male	19	Sophomore	2.5	25	20	Catholic
13	Female	21	Senior	3.5	2	0	Other
14	Male	21	Junior	1.8	19	33	Protestant
15	Female	42	Sophomore	3.9	10	0	Protestant
16	Female	19	Sophomore	2.3	45	0	Catholic
17	Male	21	Junior	2.8	29	10	Not religious
18	Male	25	Sophomore	3.1	14	0	Other
19	Female	21	Junior	3.5	5	0	Catholic
20	Female	17	Freshman	3.5	28	0	Jewish

Table 1.2
Example of the Data Presented in Table 1.1 as They Would Be Stored in a Computer Data File

ID Number	Gender	Age	College Year	GPA	Average Month		Religion
					\# Drinks	\# Times Drugs Used	
1	1	19	2	2.3	45	22	1
2	2	22	4	3.1	30	10	6
3	1	22	4	3.8	0	0	2
4	1	18	1	2.9	35	5	3
5	2	20	3	2.5	20	20	1
6	1	23	4	3.0	10	0	1
7	2	18	1	1.9	45	25	5
8	1	19	2	2.8	28	3	2
9	2	28	3	3.3	9	0	2
10	1	21	3	2.7	0	0	4
11	1	18	1	3.1	19	2	3
12	2	19	2	2.5	25	20	1
13	1	21	4	3.5	2	0	6
14	2	21	3	1.8	19	33	2
15	1	42	2	3.9	10	0	2
16	1	19	2	2.3	45	0	1
17	2	21	3	2.8	29	10	5
18	2	25	2	3.1	14	0	6
19	1	21	3	3.5	5	0	1
20	1	17	1	3.5	28	0	3

Figure 1.1 Levels of Measurement

Table 1.3

Ordinal-Level Variables Can Be Added to Create an Index With Interval-
Level Properties: Core Alcohol and Drug Survey

| How Do You Think Your Close Friends Feel
 (or Would Feel) About You? (mark one for each line) | Do Not
 Disapprove | Disapprove |
| :--- | :--- | :--- | :--- | | Strongly |
| :---: |
| Disapprove |$|$| a. Trying marijuana once or twice | | |
| :--- | :--- | :--- |
| b. Smoking marijuana occasionally | | |
| c. Smoking marijuana regularly | | |
| d. Trying cocaine once or twice | | |
| e. Taking cocaine regularly | | |
| f. Trying LSD once or twice | | |
| g. Taking LSD regularly | | |
| h. Trying amphetamines once or twice | | |
| i. Taking amphetamines regularly | | |
| j. Taking one or two drinks of an alcoholic | | |
| beverage (e.g., beer, wine, liquor) nearly every | | |
| day | | |

[^0]Table 1.4 Properties of Measurement Levels

Examples of Comparison Statements	Appropriate Math Operations	Relevant Level of Measurement			
		Nominal	Ordinal	Interval	Ratio
A is equal to (not equal to) B	$=(\neq)$	\checkmark	\checkmark	\checkmark	\checkmark
A is greater than (less than) B	$>$ (<)		\checkmark	\checkmark	\checkmark
A is three more than (less than) B	+ (-)			\checkmark	\checkmark
A is twice (half) as large as B	$\times(\div)$				\checkmark

Age Group	Number of Victims (f)
$12-17$	545,370
$18-24$	527,410
$24-34$	604,500
$35-49$	684,150
$50-64$	566,990
65 and older	112,760

Table 1.5
 Violent Crime Victims, Total Population, and Violent Crime Rates per 1,000 by Age Group, 2013

Age Group	Number of Victims	Total Population	Rate per 1,000
$12-17$	545,370	$24,633,684$	22.1
$18-24$	527,410	$27,143,454$	19.4
$24-34$	604,500	$39,891,724$	15.2
$35-49$	684,150	$65,240,931$	10.5
$50-64$	566,990	$41,860,232$	13.5
65 and older	112,760	$34,991,753$	3.2

Source: Adapted from Criminal Victimization, 2013 by Truman and Langton, 2014, from the Bureau of Justice Statistics, U.S. Department of Justice.

Table 1.6

Total Number, Number Reported, Proportion, and Percentage of Crimes Reported to Police by Type of Crime (NCVS, 2013)

Type of Crime	Total Number (n)	Number Reported (f)	Proportion (f / n)	Percent $(f / n) \times 100$
Violent crime	$\mathbf{3 , 0 4 1 , 1 7 0}$	$\mathbf{1 , 3 9 8 , 9 3 8}$.46	46
Rape/Sexual assault	173,610	60,073	.35	35
Robbery	369,070	250,967	.68	68
Assault	$2,600,920$	$1,118,395$.43	43
Aggravated assault	633,090	405,177	.64	64
Simple assault	$2,046,600$	777,708	.38	38
Domestic violence	589,140	335,809	.57	57
Intimate partner violence	369,310	210,506	.57	57
Stranger violence	$1,244,560$	609,834	.49	49
Violence with injury	849,240	305,726	.56	56
Property crime	$\mathbf{1 1 , 5 3 1 , 4 2 0}$	$\mathbf{4 , 1 5 1 , 3 1 1}$.36	36
Burglary	$2,458,360$	$1,401,265$.57	57
Motor vehicle theft	555,660	422,301	.76	76
Personal theft	$9,070,680$	$2,630,497$.29	29

Source: Adapted from Tables 4 and 6 of Criminal Victimization, 2013 by Truman and Langton, 2014, from the Bureau of Justice Statistics, U.S. Department of Justice.

Table 1.7 Murder Rates by State per 100,000 Population

Alabama	7.2	Montana	2.2
Alaska	4.6	Nebraska	3.1
Arizona	5.4	Nevada	5.8
Arkansas	5.4	New Hampshire	1.7
California	4.6	New Jersey	4.5
Colorado	3.4	New Mexico	6.0
Connecticut	2.4	New York	3.3
Delaware	4.2	North Carolina	4.8
Florida	5.0	North Dakota	2.2
Georgia	5.6	Ohio	3.9
Hawaii	1.5	Oklahoma	5.1
Idaho	1.7	Oregon	2.0
Illinois	5.5	Pennsylvania	4.7
Indiana	5.4	Rhode Island	2.9
lowa	1.4	South Carolina	6.2
Kansas	3.9	South Dakota	2.4
Kentucky	3.8	Tennessee	5.0
Louisiana	10.8	Texas	4.3
Maine	1.8	Utah	1.7
Maryland	6.4	Vermont	1.6
Massachusetts	2.0	Virginia	3.8
Michigan	6.4	Washington	2.3
Minnesota	2.1	West Virginia	3.3
Mississippi	6.5	Wisconsin	2.8
Missouri	6.1	Wyoming	2.9

Source: Adapted from Table 4 of Crime In the United States from the Federal Bureau of Investigation (2013a).

	f	Proportion	$\%$
Less than $\$ 10$	16		
$\$ 10-\$ 49$	39		
$\$ 50-\$ 99$	48		
$\$ 100-\$ 249$	86		
$\$ 250-\$ 999$	102		
$\$ 1,000$ or more	251		
	$n=542$		

Figure 2.1
Rate of Firearm-Related Violent Victimization per 1,000 People 12 Years or Older: National Crime Victimization Survey

In recent years, have gun crimes in America gone up or down?

Table 2.1 Types of Hate Crime Incidents Reported to Police in 2013

Basis of Hate	f	Proportion	$\%$
Race	2,871	.485	48.5
Religion	1,031	.174	17.4
Sexual orientation	1,233	.208	20.8
Ethnicity/National origin	655	.111	11.1
Disability	83	.014	1.4
Gender	18	.003	0.3
Gender identity	31	.005	0.5
Total	5,922	1.000	100.0

Source: Adapted from Hate Crime Statistics-2013 from the Federal Bureau of Investigation (2013b).

Figure 2.2
Types of Hate Crime Incidents Reported to Police in 2013: Frequency Data

Figure 2.3
Types of Hate Crime Incidents Reported to Police in 2013: Frequency and Percentage Data

Table 2.2

Hate Crime Incidents Reported to Police in 2013 That Were Motivated by Bias Against the Victim's Religion

Type of Religious Hate	f	Proportion	$\%$
Anti-Jewish	625	.606	60.6
Anti-Catholic	70	.068	6.8
Anti-Protestant	35	.034	3.4
Anti-Islamic	135	.131	13.1
Anti-other religions	117	.113	11.3
Anti-multireligious group	42	.041	4.1
Anti-agnostic/atheist	7	.007	0.7
Total	1,031	1.00	100.0

Source: Adapted from Hate Crime Statistics-2013 from the Federal Bureau of Investigation (2013b).

Figure 2.4
Pie Chart for Antireligious Hate Crime Incidents Reported to the Police in 2013 by Type of Antireligious Sentiment

Figure 2.5
Bar Chart for Frequency of Religious Hate Crime Incidents Reported to the Police in 2013

Type of Religious Hate Crime

Table 2.3	Percentage of Arrests for Violent Crimes, Property Crimes, and Total Index Crimes by Gender, 2013	
Crime Type	\% Male	
Violent crimes	79.9	\% Female

Source: Adapted from table 42 of Crime In the United States from the Federal Bureau of Investigation (2013a).

Figure 2.6
Percentage of Total Arrests for Violent, Property, and Total Index Offenses by Gender, 2013

Table 2.4 Hypothetical Response Times of the Police to a 911 Call (in Minutes)

7	4	3	1	3	2	6	10	7	2
5	3	5	9	2	4	9	3	1	4
4	4	6	6	5	6	11	5	3	8
3	2	1	4	8	5	6	3	3	2
1	2	6	7	5	3	1	4	4	6

Table 2.5
Ungrouped Frequency Distribution for 50 Police Response Times to a 911 Call for Service

Minutes	f	of	p	cp	\%	c\%
1	5	5	. 10	. 10	10	10
2	6	11	. 12	. 22	12	22
3	9	20	. 18	. 40	18	40
4	8	28	. 16	. 56	16	56
5	6	34	. 12	. 68	12	68
6	7	41	. 14	. 82	14	82
7	3	44	. 06	. 88	6	88
8	2	46	. 04	. 92	4	92
9	2	48	. 04	. 96	4	96
10	1	49	. 02	. 98	2	98
11	1	50	. 02	1.00	2	100
Total	50		1.00		100	

Figure 2.7 Police Response Times to 911 Calls

Figure 2.8 Police Response Times to 911 Calls Using Frequencies

Figure 2.9 Police Response Times to 911 Calls Using Percentages

Figure 2.10 Cumulative Percentage of Police Response Times to 911 Calls

Table 2.6 Number of Days Until Rearrest for Sample of 120 Released Offenders

25	30	31	33	19	36
37	34	39	32	33	37
20	27	38	29	23	36
29	39	30	28	33	35
27	27	25	24	29	38
28	26	34	23	36	17
40	31	29	28	33	38
26	31	32	35	37	32
30	29	37	33	33	25
18	19	33	40	31	29
27	23	40	24	36	38
24	27	35	33	32	32
34	30	31	31	36	36
24	25	25	26	27	28
34	32	28	35	33	29
35	29	35	31	28	27
31	34	37	36	36	35
40	29	31	34	34	33
30	32	30	29	29	30
31	33	33	34	35	34

Table 2.7 Time Until Rearrest: Ungrouped Frequency and Percentage Distribution

Days Until Rearrest	f	\%	c\%
17	1	0.8	0.8
18	1	0.8	1.6
19	2	1.7	3.3
20	1	0.8	4.1
21	0	0.0	4.1
22	0	0.0	4.1
23	3	2.5	6.6
24	4	3.3	9.9
25	5	4.2	14.1
26	3	2.5	16.6
27	7	5.8	22.4
28	6	5.0	27.4
29	11	9.2	36.6
30	7	5.8	42.4
31	10	8.3	50.7
32	7	5.8	56.5
33	12	10.0	66.5
34	8	6.7	73.2
35	8	6.7	79.9
36	8	6.7	86.6
37	6	5.0	91.6
38	4	3.3	94.9
39	2	1.7	96.6
40	4	3.3	99.9*
Total	$n=120$	99.9*	

[^1]Figure 2.11 Histogram of Ungrouped Time-Until-Rearrest Data

Table 2.8 Grouped Distribution for Time-Until-Rearrest Data

Stated Class Limits (days)	f	$c f$	p	$c p$	$\%$	$c \%$
$17-19$	4	4	.0333	.0333	3.33	3.33
$20-22$	1	5	.0083	.0416	0.83	4.16
$23-25$	12	17	.1000	.1416	10.00	14.16
$26-28$	16	33	.1333	.2749	13.33	27.49
$29-31$	28	61	.2333	.5082	23.33	50.82
$32-34$	28	89	.2333	.7415	23.33	74.15
$35-37$	21	110	.1750	.9165	17.50	91.65
$38-40$	10	120	.0833	.9998	8.33	99.98
Total	120		$.9998^{*}$		99.98^{*}	

*Does not sum to 1.0 , or 100%, because of rounding.

Figure 2.12 Histogram of Grouped Frequency Data for Time Until Rearrest

Table 2.9 Grouped Distribution for Time-Until-Rearrest Data Using Interval Width of 2

Stated Class Limits	f	$\%$
$17-18$	2	1.7
$19-20$	3	2.5
$21-22$	0	0.0
$23-24$	7	5.8
$25-26$	8	6.7
$27-28$	13	10.8
$29-30$	18	15.0
$31-32$	17	14.2
$33-34$	20	16.7
$35-36$	16	13.3
$37-38$	10	8.3
$39-40$	6	5.0
Total	120	100.0

Figure 2.13

Histogram of Grouped Frequency Data for Time Until Rearrest Using Interval Width of 2

Stated Class Limits, Real Class Limits, and Midpoints for Grouped Frequency Distribution in Table 2.8

Stated Class Limits	Real Class Limits	m_{i}	f
$17-19$	$16.5-19.5$	18	4
$20-22$	$19.5-22.5$	21	1
$23-25$	$22.5-25.5$	24	12
$26-28$	$25.5-28.5$	27	16
$29-31$	$28.5-31.5$	30	28
$32-34$	$31.5-34.5$	33	28
$35-37$	$34.5-37.5$	36	21
$38-40$	$37.5-40.5$	39	10
			Total $=120$

Figure 2.14 Example of a Normal or Symmetrical Distribution

Figure 2.15 Example of a Negatively Skewed Distribution

Figure 2.16 Example of a Positively Skewed Distribution

Annual Rates (per 100,000) of Rape, Robbery, and Aggravated Assault
Table 2.11
Known to the Police and Reported to the FBl's Uniform Crime Reports Program, 1972-2013

Year	Rape Rate	Robbery Rate	Aggravated Assault Rate
1972	22.5	180.7	188.8
1973	24.5	183.1	200.5
1974	26.2	209.3	215.8
1975	26.3	220.8	227.4
1976	26.6	199.3	233.2
1977	29.4	190.7	247.0
1978	31.0	195.8	262.1
1979	34.7	218.4	286.0
1980	36.8	251.1	298.5
1981	36.0	258.7	289.3
1982	34.0	238.9	289.0
1983	33.7	216.5	279.4
1984	35.7	205.4	290.6
1985	37.1	208.5	304.0
1986	37.9	225.1	347.4
1987	37.4	212.7	352.9
1988	37.6	220.9	372.2
1989	38.1	233.0	385.6
1990	41.2	257.0	422.9
1991	42.3	272.7	433.4
1992	42.8	263.7	441.9
1993	41.1	256.0	440.5
1994	39.3	237.8	427.6
1995	37.1	220.9	418.3
1996	36.3	201.9	391.0
1997	35.9	186.2	382.1
1998	34.5	165.5	361.4
1999	32.8	150.1	334.3
2000	32.0	144.9	323.6
2001	31.8	148.5	318.6
2002	33.1	146.1	309.5
2003	32.3	142.5	295.4
2004	32.4	136.7	288.6
2005	31.8	140.8	290.8
2006	30.9	149.4	287.5
2007	30.1	155.7	292.6
2008	29.4	154.0	281.6
2009	28.9	139.6	268.3
2010	27.8	122.7	255.5
2011	26.8	117.1	243.5
2012	26.7	116.3	246.5
2013	23.1	112.9	233.7

Figure 2.17

Time Plot of Forcible Rape, Armed Robbery, and Aggravated Assault Rates Using Both y Axes, 1972-2013

Time Plot of Forcible Rape, Armed Robbery, and Aggravated Assault Rates Using Only One y Axis, 1972-2013

Stated Class Limits	f
$0-7$	0
$7-10$	35
$10-15$	40
$16-30$	50
Total	125

Stated Class Limits	f
$7-9$	35
$10-12$	25
$13-15$	15
$16-18$	20
$19-21$	10
$22-24$	5
$25-27$	10
$28-30$	5
Total	125

Number Correct	Gender
15	Male
16	Female
11	Male
10	Male
14	Male
15	Male
15	Female
11	Female
10	Male
10	Male
20	Female
15	Female
14	Male
16	Male
15	Male
19	Female
11	Male
13	Male
15	Female
13	Female
10	Male
20	Male
15	Male
16	Female
10	Male

17	22	13	24	15
12	30	17	27	16
21	14	12	13	18
18	27	19	18	25
11	19	11	26	30
28	28	23	14	35
8	13	26	22	21
17	20	15	39	15
26	24	16	30	31
31	25	24	23	6
15	32	29	38	36
34	16	12	34	12
20	12	33	35	34
7	21	11	37	19
11	21	20	43	35

Victimi- zation Year	Rate per 1,000 Households	Victimi- zation Year	Rate per 1,000 Households
1993	351.8	2004	167.5
1994	341.2	2005	159.5
1995	315.5	2006	169.0
1996	289.3	2007	154.9
1997	267.1	2008	142.6
1998	237.1	2009	132.6
1999	210.6	2010	125.4
2000	190.4	2011	138.7
2001	177.7	2012	155.8
2002	168.2	2013	131.4
2003	173.4		

Source: Data taken from the Bureau of Justice Statistics at www.ojp.usdoj.gov/bjs/.

Year	Number of Arrests	Year	Number of Arrests
1994	117,300	2004	83,700
1995	116,200	2005	85,600
1996	106,400	2006	90,800
1997	92,300	2007	92,400
1998	86,900	2008	94,200
1999	79,200	2009	95,000
2000	78,600	2010	85,100
2001	81,900	2011	82,900
2002	81,200	2012	82,200
2003	82,300		

Source: Data taken from Easy Access to FBI Arrest Statistics at www.ojjdp.gov/ojstatbb/ezaucr/asp/ucr_display.asp.

Table 3.1	Types of Hate Crime Incidents Reported to Police in 2013		
	f	Proportion	$\%$
Basis of Hate	2,871	.485	48.5
Race	1,031	.174	17.4
Religion	1,233	.208	20.8
Sexual orientation	655	.111	11.1
Ethnicity/National origin	83	.014	1.4
Disability	18	.003	0.3
Gender	31	.005	0.5
Gender identity	5,922	1.000	100.0
Total			

Source: Adapted from Hate Crimes Statistics-2013 from the Federal Bureau of Investigation (2013b).

Table 3.2Number of Prior Arrests for a Sample of Armed Robbery Suspects			
Number	f	$\%$	
0	38	25.33	
1	35	23.33	
2	10	6.67	
3	9	6.00	
4	14	9.33	
5	7	4.67	
6	11	7.33	
7	8	5.33	
8	10	6.67	
9	5	3.33	
10 or more	3	2.00	
Total	$n=150$	99.99^{*}	

*Percentages may not sum to 100% due to rounding.

Figure 3.2 Number of Prior Arrests Among 150 Suspected Armed Robbers

Grouped Frequency Distribution for Time-Until-Rearrest Data for 120 Released Offenders		
Stated Limits (Days)	f	Midpoint
$17-19$	4	18
$20-22$	1	21
$23-25$	12	24
$26-28$	16	27
$29-31$	28	30
$32-34$	28	33
$35-37$	21	36
$38-40$	10	39
	$n=120$	

Figure 3.3 Histogram of Grouped Frequency Data for Time Until Rearrest

Number of New Charges for Domestic Violence for 60 Men Arrested for Domestic Abuse	
Number of New Charges	f
0	14
1	7
2	5
3	8
4	6
5	4
6	3
7	3
9	5
10 or more	3
	2
2	60

Rank	Score
1	1 minute
2	2 minutes
3	3 minutes
4	6 minutes
5	9 minutes
6	12 minutes
7	15 minutes

Rank	Score
1	1 minute
2	2 minutes
3	3 minutes
4	6 minutes
5	9 minutes
6	12 minutes
7	15 minutes
8	18 minutes

Table 3.5				
Reported Number of Times				
Committing Vandalism for 77 Boys				
\# of Times	f	$c f$	$\%$	$c \%$
0	15	15	19	19
1	10	25	13	32
2	5	30	7	39
3	11	41	14	53
4	7	48	9	62
5	8	56	10	72
6	5	61	7	79
7	4	65	5	84
8	5	70	7	91
9	4	74	5	96
10 or more	3	77	4	100
Total	$n=77$		100	

Table 3.6
 Grouped Frequency Distribution for Time-Until-Rearrest Data for 120 Inmates

Stated Limits	Real Limits	f	cf
$17-19$ days	$16.5-19.5$ days	4	4
$20-22$ days	$19.5-22.5$ days	1	5
$23-25$ days	$22.5-25.5$ days	12	17
$26-28$ days	$25.5-28.5$ days	16	33
$29-31$ days	$28.5-31.5$ days	28	61
$32-34$ days	$31.5-34.5$ days	28	89
$35-37$ days	$34.5-37.5$ days	21	110
$38-40$ days	$37.5-40.5$ days	10	120
		$n=120$	

Table 3.7 Rape Rates (per 100,000 People) for Selected U.S. Cities in 2013

Rank	City	Rate	Rank	City	Rate	Rank	City	Rate
1	Binghamton, NY	22.2	1	Binghamton, NY	22.2	1	Goldsboro, NC	4.0
2	Albany, GA	23.5	2	Albany, GA	23.5	2	Binghamton, NY	22.2
3	Redmond, OR	28.0	3	Redmond, OR	28.0	3	Albany, GA	23.5
4	Cedar Rapids, IA	28.1	4	Cedar Rapids, IA	28.1	4	Redmond, OR	28.0
5	Charleston, SC	28.4	5	Charleston, SC	28.4	5	Cedar Rapids, IA	28.1
6	Boston, MA	33.8	6	Boston, MA	33.8	6	Charleston, SC	28.4
7	Akron, OH	38.4	7	Akron, OH	38.4	7	Boston, MA	33.8
			8	Anchorage, AK	133.2	8	Akron, OH	38.4

Source: Adapted from Crime In the United States from the Federal Bureau of Investigation (2013a).

Table 3.8	Response Times to 911 Calls for Police Assistance	
Minutes	f_{i}	$x f_{i}$
1	5	5
2	6	12
3	9	27
4	8	32
5	6	30
6	7	42
7	3	21
8	2	16
9	2	18
10	1	10
11	1	11
	$n=50$	$\Sigma=224$

Table 3.9
Calculating a Mean Using Grouped Data: Time Until Rearrest for 120 Inmates

Stated Limits (Days)	F	Midpoint	$m f_{i}$
$17-19$	4	18	72
$20-22$	1	21	21
$23-25$	12	24	288
$26-28$	16	27	432
$29-31$	28	30	840
$32-34$	28	33	924
$35-37$	21	36	756
$38-40$	10	39	390
	$n=120$		$\Sigma=3,723$

Table 3.10	Calculating a Mean Using Ungrouped Data: Time Until Rearrest for 120 Inmates	
x_{i}	f_{i}	$x_{i} f_{i}$
17	1	17
18	1	18
19	2	38
20	1	20
21	0	0
22	0	0
23	3	69
24	4	96
25	5	125
26	3	78
27	7	189
28	6	168
29	11	319
30	7	210
31	10	310
32	7	224
33	12	396
34	8	272
35	8	280
36	8	288
37	6	222
38	4	152
39	2	78
40	4	160
	$n=120$	$\Sigma=3,729$

X	f
None	20
Some	85
Most	30
All	10

City	Homicide Rate
Boston, MA	6.8
Cincinnati, OH	4.5
Denver, CO	6.0
Las Vegas, NV	8.8
New Orleans, LA	43.3
New York, NY	8.7
Pittsburgh, PA	10.5
Salt Lake City, UT	5.6
San Diego, CA	4.3
San Francisco, CA	7.7

Person Number	Number of Crimes Committed	Person Number	Number of Crimes Committed
1	4	11	4
2	16	12	11
3	10	13	10
4	7	14	88
5	3	15	9
6	112	16	12
7	5	17	8
8	10	18	5
9	6	19	7
10	2	20	10

Request	Frequency
Offense against person	213
Offense against property	496
Other criminal offense	238
Potential offense	3,784
Individual in distress	139
Noncriminal incident	986

Narcotics Investigation (\%)	Frequency
$0-9$	5
$10-19$	13
$20-29$	26
$30-39$	38
$40-49$	14
$50-59$	2
$60-69$	2

Year	\# of Executions
2007	42
2008	37
2009	52
2010	46
2011	43
2012	43
2013	39
2014	35

Number of Times Assaulted	Frequency
$0-1$	85
$2-3$	70
$4-5$	30
$6-7$	15

Person	Resting Heart Rate	Person	Resting Heart Rate
1	59	11	60
2	62	12	55
3	69	13	52
4	62	14	70
5	64	15	52
6	70	16	57
7	54	17	53
8	66	18	61
9	51	19	64
10	56	20	63

Table 4.1
Number of Years of Prison Time for Convicted Armed Robbery Defendants

Defendant	Judge 1	Judge 2
	Sentence Given	Sentence Given
1	5	1
2	7	2
3	7	2
4	7	3
5	7	3
6	7	3
7	8	4
8	8	4
9	8	5
10	8	8
11	9	9
12	9	10
13	9	11
14	10	14
15	11	15
16	11	15
17	11	16
18	12	17
19	12	18
20	14	20
$n=20$	$\begin{gathered} \Sigma=180 \\ \bar{X}=9 \end{gathered}$	$\begin{gathered} \Sigma=180 \\ \bar{X}=9 \end{gathered}$

Figure 4.1 Sentence Length in Years Given by Two Judges

Table 4.2	Type and Frequency of Patrolling					
Used in Police Shifts in One U.S. City			$	$		f
:---	:---:					
Foot patrol only	5					
Car patrol only	30					
Foot and car patrol	10					
Total number of shifts	45					

Table 4.3Type of Hate Crime Incident Reported to Police in 2013			
Basis of Hate			
Race	2,871	.485	48.5
Religion	1,031	.174	17.4
Sexual orientation	1,233	.208	20.8
Ethnicity/National origin	655	.111	11.1
Disability	83	.014	1.4
Gender	18	.003	0.3
Gender identity	31	.005	0.5
Total	5,922	1.0	100.0

Source: Adapted from Hate Crime Statistics—2013 from the Federal Bureau of Investigation (2013b).

Table 4.4 Hypothetical Hate Crime Data

Type of Hate	f	Proportion
Racial	4,975	.840
Religious	414	.070
Sexual orientation	272	.046
Ethnicity/National origin	148	.025
Disability	53	.009
Gender	30	.005
Gender identity	30	.005
Total	5,922	1.000

Table 4.5 Hypothetical Hate Crime Data

Type of Hate	f	Proportion
Racial	846	.143
Religious	846	.143
Sexual orientation	846	.143
Ethnicity/National origin	846	.143
Disability	846	.143
Gender	846	.143
Gender identity	846	.143
Total	5,922	1.001^{*}

*Greater than 1.0 due to rounding.

Table 4.6
Grouped Frequency Distribution for Time-Until-Failure Data for 120 Inmates

Stated Limits (Days)	f	Midpoint
$17-19$	4	18
$20-22$	1	21
$23-25$	12	24
$26-28$	16	27
$29-31$	28	30
$32-34$	28	33
$35-37$	10	36
$38-40$	$n=120$	39

Table 4.7
Number of Years of Prison Time for Convicted Armed Robbery Defendants

Judge 1		Judge 2	
Years Sentenced	f	Years Sentenced	f
5	1	1	10
6	1	20	10
7	3		
8	4		
9	3		
10	1		
11	3		
12	2		
13	1		
14	1		

Table 4.8
The Relationship Among Percentiles, Deciles, and Quartiles

Percentile	Decile	Quartile
100th	10th	4th $\left(Q_{4}\right)$
99th		
98th		
90th	9th	
.		
80th	8th	
-		
.		
75th		$3 \mathrm{rd}\left(Q_{3}\right)$
-		
.		
60th	6th	
-		
.		
50th	5th	2nd (Q_{2})
-		
-		
.		
30th	3rd	
29th		
28th		
25th		1st (Q_{1})
-		
.		
20th	2nd	
-		
3rd		
2nd		
1st		

Table 4.9	Number of Escapes From 20 Correctional Institutions in Two States	
Institution	State A	State B

Rank-Ordered Number of Escapes
From 20 Correctional Institutions in Two States From Table 4.9

Institution	State A	State B
1	0	1
2	1	1
3	1	2
4	2	2
5	2	3
6	2	3
7	3	3
8	3	3
9	3	4
10	4	4
11	4	4
12	4	5
13	5	5
14	5	5
15	6	6
16	6	6
17	7	8
18	7	8
19	9	9
20	23	10

Frequency Counts, Percentages, and Cumulative Percentages for Escape Data From Two States

State A \# of Escapes	f	$\%$	Cum \%	State B \# of Escapes	f	$\%$	Cum \%
0	1	5	5	1	2	10	10
1	2	10	15	2	2	10	20
2	3	15	30	3	4	20	40
3	3	15	45	4	3	15	55
4	3	15	60	5	3	15	70
5	2	10	70	6	2	10	80
6	2	10	80	8	2	10	90
7	2	10	90	9	1	5	95
9	1	5	95	10	1	5	100
23	1	5	100				
	$n=20$	100			$n=20$	100	

Two Sample Distributions of One Variable: (a) Five Scores With Little
Figure 4.2 Dispersion About the Mean and (b) Five Scores With a Great Deal of Dispersion About the Mean

(a)

(b)

For the scores in Figure 4.2(a)

Score	Mean	Deviation From Mean	Squared Deviation
23	25	$23-25=-2$	4
26	25	$26-25=+1$	1
23	25	$23-25=-2$	4
27	25	$27-25=+2$	4
26	25	$26-25=+1$	1

For the scores in Figure 4.2(b)

Score	Mean	Deviation From Mean
10	25	$10-25=-15$
50	25	$50-25=+25$
15	25	$15-25=-10$
40	25	$40-25=+15$
10		$10-25=-15$

For the scores in Figure 4.2(a):

Score	Mean	Deviation From Mean
23	25	$23-25=-2$
26	25	$26-25=+1$
23	25	$23-25=-2$
27	25	$27-25=+2$
26	25	$26-25=+1$

For the scores in Figure 4.2(b):

Score	Mean	Deviation From Mean	Squared Deviation
10	25	$10-25=-15$	225
50	25	$50-25=25$	625
15	25	$15-25=-10$	100
40	25	$40-25=15$	225
10	25	$10-25=-15$	225

Table 4.13	Calculations for the Variance and Standard Deviation in Judge 1's Sentencing $(n=20)$	
x	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$
5	$5-9=-4$	16
7	$7-9=-2$	4
7	$7-9=-2$	4
7	$7-9=-2$	4
7	$7-9=-2$	4
7	$7-9=-2$	4
8	$8-9=-1$	1
8	$8-9=-1$	1
8	$8-9=-1$	1
8	$8-9=-1$	1
9	$9-9=0$	0
9	$9-9=0$	0
9	$9-9=0$	0
10	$10-9=1$	1
11	$11-9=2$	4
11	$11-9=2$	4
11	$11-9=2$	4
12	$12-9=3$	9
12	$12-9=3$	9
	$14-9=5$	25
		$\Sigma=96$

Table 4.14	Calculations for the Variance and Standard Deviation in Judge 2's Sentencing ($n=20$)	
x	$x_{i}-\bar{x}$	$\left(x_{i}-\bar{x}\right)^{2}$
1	$1-9=-8$	64
2	$2-9=-7$	49
2	$2-9=-7$	49
3	$3-9=-6$	36
3	$3-9=-6$	36
3	$3-9=-6$	36
4	$4-9=-5$	25
4	$4-9=-5$	25
5	$5-9=-4$	16
8	$8-9=-1$	1
9	$9-9=0$	0
10	$10-9=1$	1
11	$11-9=2$	4
14	$14-9=5$	25
15	$15-9=6$	36
15	$15-9=6$	36
16	$16-9=7$	49
17	$17-9=8$	64
18	$18-9=9$	81
20	$20-9=11$	121
		$\Sigma=754$

Self-Control Scores for a

Table 4.15
Sample of 25 Incarcerated Youths

x	$x_{i}-\bar{\chi}$	$\left(x_{i}-\bar{x}\right)^{2}$
85	$85-91=-6$	36
100	$100-91=9$	81
87	$87-91=-4$	16
93	$93-91=2$	4
78	$78-91=-13$	169
103	$103-91=-12$	144
88	$88-91=-3$	9
94	$94-91=3$	9
94	$94-91=3$	9
101	$101-91=10$	100
94	$94-91=3$	9
92	$92-91=1$	1
83	$83-91=-8$	64
70	$70-91=-21$	441
110	$110-91=19$	361
87	$87-91=-4$	16
91	$91-91=0$	0
79	$79-91=-12$	144
84	$84-91=-7$	49
88	$88-91=-3$	9
90	$90-91=-1$	1
104	$104-91=13$	169
100	$100-91=9$	81
98	98-91 = 7	49
82	$82-91=-9$	81
		$\Sigma=2,052$

Table 4.16	Stated Class Limits, Midpoints, and Frequencies for Grouped Frequency Distribution of Time-Until-Rearrest Data $(n=120)$	
Stated Class Limits	Midpoints (m.)	f
17-19	18	4
20-22	21	1
23-25	24	12
26-28	27	16
29-31	30	28
32-34	33	28
35-37	36	21
38-40	39	10

Table 4.17
Calculations for Variance and Standard Deviation for Time-Until-Rearrest Data ($n=120$)

Midpoint of Class Interval	$m_{i}-\bar{X}$	$\left(m_{i}-\bar{X}\right)^{2}$	f_{i}	$f_{i}\left(m_{i}-\bar{X}\right)^{2}$
18	$18-31=-13$	169	4	$4(169)=676$
21	$21-31=-10$	100	1	$1(100)=100$
24	$24-31=-7$	49	12	$12(49)=588$
27	$27-31=-4$	16	16	$16(16)=256$
30	$30-31=-1$	1	28	$28(1)=28$
33	$33-31=2$	4	28	$28(4)=112$
36	$36-31=5$	25	21	$21(25)=525$
39	$39-31=8$	64	10	$10(64)=640$
				$\Sigma=2,925$

Table 4.18	Data and Calculations for Variance and Standard Deviation: Judge Sentencing Data From Table 4.1		
Judge 1		Judge 2	
x	x^{2}	x	χ^{2}
5	25	1	1
7	49	2	4
7	49	2	4
7	49	3	9
7	49	3	9
7	49	3	9
8	64	4	16
8	64	4	16
8	64	5	25
8	64	8	64
9	81	9	81
9	81	10	100
9	81	11	121
10	100	14	196
11	121	15	225
11	121	15	225
11	121	16	256
12	144	17	289
12	144	18	324
14	196	20	400
$\Sigma=180$	$\Sigma=1,716$	$\Sigma=180$	$\Sigma=2,374$

Talculations for Variance and Standard Deviation for Grouped Time-Until-Rearrest Data				
	$m f$	f_{i}	$m_{i}^{2 f_{i}}$	$m_{i} f_{i}$
	324	4	1,296	72
	441	1	441	21
	576	12	6,912	288
27	729	16	11,664	432
30	900	28	25,200	840
33	1,089	28	30,492	924
36	1,296	21	27,216	756
39	1,521	10	15,210	390
			$\Sigma=118,431$	3,723

		Current Offense Is:				
	Property	Violent	Drug	Status		
Previous offense was:	Property	75	50	40	120	
	Violent	10	30	30	20	
	Drug	20	10	110	115	
Total	Status	20	20	50	320	

Number of Thefts	f
$0-4$	76
$5-9$	52
$10-14$	38
$15-19$	21
$20-24$	10
$25-29$	8

Person	Years of Education	Person	Years of Education
1	11	11	9
2	8	12	9
3	12	13	5
4	9	14	9
5	9	15	7
6	9	16	6
7	10	17	10
8	10	18	12
9	10	19	9
10	11	20	5

Year	Race	f
1980	White	852
	Black	675
	Hispanic	112
	Asian	25
	Other	59
1990	White	979
	Black	756
	Hispanic	262
	Asian	86
	Other	78
2000	White	1,211
	Black	925
	Hispanic	636
	Asian	310
	Other	120
2010	White	1,300
	Black	1,017
	Hispanic	750
	Asian	400
	Other	145

State	Robbery Arrest Rate	State	Robbery Arrest Rate
Arizona	29	New York	70
Arkansas	22	North Carolina	41
Colorado	17	North Dakota	7
Georgia	32	Oregon	30
Idaho	6	Pennsylvania	51
Kentucky	29	South Carolina	32
Maine	17	Texas	25
Maryland	56	Utah	13
Missouri	33	Wyoming	5

Source: Adapted from Puzzanchera and Kang © 2014 from the Office of Juvenile Justice and Delinquency Prevention.

Table 5.1Adolescents' Delinquent Conduct by Family Status				
	0	$1-4$	5 or More	Total
	125	60	15	200
Yes	10	35	65	110
Total	135	95	80	310

Table 5.2	Joint Frequency Distribution for Right- and Left-Handedness and Delinquency		
	Committed Delinquent Act Last Year?		
	No	Yes	Total

Table 5.3 Joi	Joint Frequency Distribution for Impulsivity and Delinquency		
Youth Impulsive?	Committed Delinquent Act Last Year?		Total
	No	Yes	
No	40	10	50
Yes	10	40	50
Total	50	50	100

Table 5.4

Rule 1: The Bounding Rule

The probability of an event (event A) must always be greater than or equal to zero or less than or equal to 1.0 .
$0 \leq P(A) \leq 1$
Rule 2: The Addition Rule
Rule 2a: The Restricted Addition Rule for Mutually Exclusive Events
If two events (events A and B) are mutually exclusive, the probability of either event A or event B occurring is equal to the sum of their separate probabilities.

$$
P(A \text { or } B)=P(A)+P(B)
$$

Rule 2b:The General Addition Rule

If two events (events A and B) are not mutually exclusive, the probability of either event A or event B occurring is equal to the sum of their separate probabilities minus their joint probability.
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Rule 3: The Multiplication Rule

Rule 3a: The Restricted Multiplication Rule for Independent Events

If two events (events A and B) are independent, the probability of event A and event B occurring simultaneously is equal to the product of their separate probabilities.
$P(A$ and $B)=P(A) \times P(B)$

Rule 3b: The General Multiplication Rule

If two events (events A and B) are not independent, the probability of event A and event B occurring simultaneously is equal to the product of the unconditional probability of A and the conditional probability of B given A.
$P(A$ and $B)=P(A) \times P(B \mid A)$

Table 5.5	Probability Distribution of the Number of Heads From Flipping a Coin Two Times
Number of Heads	

Table 5.6	Observed Results From the Flipping of a Coin Twice 10
Number of Heads f p	
0	5
1	3
2	2
Total	10

Table 5.7	Probability Distribution of Appearance at Trial Where p (Success) $=.8$, $q($ Failure $)=.2$, and $n=5$	
Number of Successes	Calculation	p
0	$\left(\frac{5!}{0!(5-0)!}\right) \cdot 8^{0} \cdot 2^{5}$. 0003
1	$\left(\frac{5!}{1!(5-1)!}\right) \cdot 8^{1} \cdot 2^{4}$. 0064
2	$\left(\frac{5!}{2!(5-2)!}\right) \cdot 8^{2} \cdot 2^{3}$. 0512
3	$\left(\frac{5!}{3!(5-3)!}\right) \cdot 8^{3} \cdot 2^{2}$. 2048
4	$\left(\frac{5!}{4!(5-4)!}\right) \cdot 8^{4} \cdot 2^{1}$. 4096
5	$\left(\frac{5!}{5!(5-5)!}\right) \cdot 8^{5} \cdot 2^{0}$. 3277
		Total $=1.00$

Figure 5.3 Histogram of Probability Distribution From Table 5.7

Table 5.8		Decision Making in Hypothesis Tests	
True State of Affairs	Fail to Reject	Reject	
Null hypothesis is true	Correct decision	Type I error	
Null hypothesis is false	Type II error	Correct decision	

Table 5.9	Probability Distribution of Recovering a Stolen Car With LoJack Where p (Success) =.4, $q($ Failure $)=.6$, and $n=10$	
Number of Successes	Calculation	P
0	$\left(\frac{10!}{0!(10-0)!}\right) \cdot 4^{0} \cdot 6^{10}$. 0060
1	$\left(\frac{10!}{1!(10-1)!}\right) \cdot 4^{1} \cdot 6^{9}$. 0403
2	$\left(\frac{10!}{2!(10-2)!}\right) \cdot 4^{2} \cdot 6^{8}$. 1209
3	$\left(\frac{10!}{3!(10-3)!}\right) \cdot 4^{3} \cdot 6^{7}$. 2150
4	$\left(\frac{10!}{4!(10-4)!}\right) \cdot 4^{4} \cdot 6^{6}$. 2508
5	$\left(\frac{10!}{5!(10-5)!}\right) \cdot 4^{5} \cdot 6^{5}$. 2007
6	$\left(\frac{10!}{6!(10-6)!}\right) \cdot 4^{6} \cdot 6^{4}$. 1115
7	$\left(\frac{10!}{7!(10-7)!}\right) \cdot 4^{7} \cdot 6^{3}$. 0425
8	$\left(\frac{10!}{8!(10-8)!}\right) \cdot 4^{8} \cdot 6^{2}$. 0106
9	$\left(\frac{10!}{9!(10-9)!}\right) \cdot 4^{9} \cdot 6^{1}$. 0016
10	$\left(\frac{10!}{10!(10-10)!}\right) \cdot 4^{10} \cdot 6^{0}$	$\begin{gathered} .0001 \\ \text { Total }=1.00 \end{gathered}$

Figure 5.4 Histogram of Probability Distribution of Stolen Car Recoveries

Figure 5.5 Representation of a Standard Normal Distribution

Figure 5.6
Two Normal Distributions With Unequal Means $\left(\mu_{1} \neq \mu_{2}\right)$ but Equal Variances $\left(\sigma_{1}^{2}={ }_{2}{ }_{2}\right)$

$\begin{array}{ll}\text { Figure 5.7 } & \begin{array}{l}\text { Two Normal Distributions With Equal Means } \\ \left(\mu_{1}=\mu_{2}\right) \text { but Unequal Variances }\left(\sigma_{1}{ }_{1}{ }^{2}{ }_{2}\right)\end{array}\end{array}$

Figure 5.8
Two Normal Distributions With Unequal Means ($\mu_{1} \neq \mu_{2}$) and Unequal Variances $\left(\sigma_{1}^{2} \neq{ }_{2}\right.$)

Figure 5.10
Area of the Normal Curve From the Mean to
Points $\pm 1, \pm 2$, and ± 3 Standard Deviations Away

Table 5.10	Number of Prior Arrests for Sample of 10 Persons Arrested During Past Year
Person	
1	Number of Prior Arrests
2	3
3	2
4	0
5	8
7	0
8	13
9	4
10	10

Figure $\left.5.14 \begin{array}{l}\text { Area of the Normal Curve Corresponding } \\ \text { to the Top } 1 \% \text { of the Distribution }\end{array}\right]$

Table 5.11	Characteristics of Three Types of Distributions		
	Mean	Standard Deviation	Distribution
Sample	$\bar{\chi}$	s	Empirical and known
Population	μ	σ	Empirical but not known
Sampling distribution	μ	$\frac{\sigma}{\sqrt{n}}$	Theoretical

Salary	f
$\$ 25,000$	6
$\$ 26,000$	8
$\$ 27,500$	9
$\$ 28,000$	10
$\$ 30,000$	16
$\$ 31,500$	19
$\$ 32,000$	12
$\$ 32,500$	15
$\$ 34,000$	8
$\$ 35,000$	7
Total	110

Impulsivity	Deterred	Not Deterred	Total
	75	15	
Impulsive	5	25	30
Total	80	40	120

Number of Violent Acts	No Measures	Metal Detectors Only	Guards Only	Guards and Metal Detectors	Total
	5	10	15	30	
	25	20	15	15	75
5 or more acts	50	30	25	10	115
Total	80	60	55	55	250

	Favor (\%)
Background checks for private and gun show sales	85
Preventing people with mental illness from purchasing guns	80
Federal database to track gun sales	67
Ban on semi-automatic weapons	58
Ban on high-capacity ammunition clips	54

Table 6.1 Top Crime Worries of Americans

Crime Worries in United States
How often do you, yourself, worry about the following things-frequently, occasionally, rarely, or never? How about ...

	\% Frequently or Occasionally Worry
Having the credit card information you have used at stores stolen by computer hackers	69
Having your computer or smartphone hacked and the information stolen by unauthorized persons	62
Having your home being burglarized when you are not there	45
Having your car stolen or broken into	42
Having a school-aged child physically harmed attending school	31
Getting mugged	31
Having your home being burglarized when you are there	30
Being the victim of terrorism	28
Being attacked while driving your car	20
Being a victim of a hate crime	18
Being sexually assaulted	18
Getting murdered	18
Being assaulted/killed by a coworker/employee where you work	7

Source: Copyright ©2014 Gallup, Inc. All rights reserved. The content is used with permission; however, Gallup retains all rights of republication.

Figure 6.1
A Hypothetical Example of 95\% Confidence Intervals Computed From 20 Different Samples of the Same Size Drawn From the Same Population

Table 6.2 Properties of the Sampling Distribution of \bar{X}

1. The mean of this sampling distribution of \bar{X} is μ.
2. The standard deviation of the sampling distribution of \bar{X} is

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

where σ is the standard deviation of the original population, n is the sample size, and $\sigma_{\bar{x}}$ is used to denote the standard deviation of the sampling distribution. This entire term is called the standard error of the mean.
3. Because of the central limit theorem, when n is large (safely, when $n \geq 30$), the sampling distribution is normally distributed regardless of the distribution of the population from which the sample was drawn.
4. As the sample size increases, the standard deviation of the sampling distribution (the standard error of the mean) decreases.

Table 6.3 Their Corresponding Critical Values of T From the Sampling Distribution of \boldsymbol{z}		
Confidence Level $(\%)$	Significance (α)	z Score
90	.10	1.65
95	.05	1.96
99	.01	2.58
99.9	.001	3.27

Figure 6.2 The z Distribution and the t Distribution

Table 6.4 Properties of the Sampling Distribution of t

1. The t distribution is bell-shaped and symmetrical and centers around $t=0$.
2. The t distribution is flatter and has fatter tails than the z distribution.
3. There are many different t distributions based on the sample size. More specifically, the distribution of t that we use for our statistical test is based on a parameter called the degrees of freedom (df). The number of degrees of freedom is different for different kinds of statistical problems. For confidence intervals, there are $n-1$ degrees of freedom where n is the sample size.
4. With sample sizes of 120 or more, the t distribution becomes virtually identical to the z distribution.

Police Officers' Overload Score in Our Sample
$\bar{X}=31$
$s=3$
$n=14$

Female Police Officers' Scores on Work Overload Test	Male Police Officers' Scores on Work Overload Test
$\bar{X}=41.9$	$\bar{X}=32.5$
$s=7.8$	$s=9.3$
$n=15$	$n=15$

Figure 7.1 Formal Steps for Hypothesis Testing

Step 1: Formally state your null $\left(H_{0}\right)$ and research $\left(H_{1}\right)$ hypotheses.
Step 2: Select an appropriate test statistic and the sampling distribution of that test statistic.
Step 3: Select a level of significance (alpha $=\alpha$) and determine the critical value and rejection region of the test statistic based on the selected level of alpha.
Step 4: Conduct the test; calculate the obtained value of the test statistic and compare it with the critical value.
Step 5: Make a decision about your null hypothesis and interpret this decision in a meaningful way based on the research question, sample, and population.

	Population	Sample
Mean reading level	$\mu=7.5$	$\bar{x}=9.3$
Standard deviation	$\sigma=$ unknown	$s=2.2$
	$N=$ unknown	$n=100$

Figure 7.2 Two Populations With Different Mean Reading Levels

Table 7.1

Alpha (α) Levels and Critical Values of z for One- and Two-Tailed Hypothesis Tests

Type of Hypothesis Test	Significance/A/pha Level	Critical Area in Each Tail	Critical z
Two-tailed	.10	.05	1.65
One-tailed	.10	.10	1.29
Two-tailed	.05	.025	1.96
One-tailed	.05	.05	1.65
Two-tailed	.01	.005	2.58
One-tailed	.01	.01	2.33
Two-tailed	.001	.0005	3.27
One-tailed		.001	3.08

Figure 7.4 Critical z and Critical Region for Two-Tailed Test and Alpha $=.05$

Population Parameters for Armed Robberies Before New Legislation	Sample Statistics for Armed Robberies After New Legislation
$\mu=52.5$ months	$\bar{x}=53.2$ months
$\sigma=$ unknown	$s=6$
$N=$ unknown	$n=110$

Figure 7.5 Critical zand Critical Region for Two-Tailed Test With Alpha $=.01$

Figure 7.6

Three Populations of Convicted Armed Robbers With Different Mean Sentence Lengths (in Months)

Figure 7.7
Two Populations of Convicted Armed Robbers, One With Mean = 52.5 and One With Mean = 58.5

Figure 7.8
Two Populations of Convicted Armed Robbers, One With Mean = 48.0 and One With Mean = 52.5

Figure 7.9 Critical z and Critical Region for Two-Tailed Test With Alpha $=.05$

Figure 7.10 Critical zand Critical Region for One-Tailed Test and Alpha $=.05$

Figure 7.11 Critical t and Critical Region for Two-Tailed Test and Alpha $=.01$

National Sample of Asset Seizures in Dollars from ATF	Sample of 14 Asset Seizures in Our State in Dollars
$\mu=\$ 75,200$	$\bar{x}=\$ 71,500$
$\sigma=$ unknown	$s=\$ 3,900$
$N=$ unknown	$n=14$

Figure 7.12 Critical t and Critical Region for Two-Tailed Test and Alpha $=.01$

Figure 7.13 Critical t and Critical Region for Two-Tailed Test and Alpha $=.01$

Figure 7.14 Critical z and Critical Region for One-Tailed and Alpha $=.05$

Population	Sample
$P=12 \%$	$\hat{p}=36 \%$
	$n=100$

Figure 7.15 Critical z and Critical Region for a One-Tailed Test With Alpha $=.05$

Facility Number	Hours Spent in Cells
1	16.3
2	21.1
3	14.9
4	13.5
5	22.2
6	15.3
7	18.1
8	19.0
9	14.2
10	9.3
11	10.1
12	21.1
13	22.3
14	15.4
15	13.2

Table 8.1	Distribution of Gender and Negative Emotionality and Joint Distribution of Gender and Negative Emotionality in Contingency Table		
Gender		f	
Female		60	
Male		60	
Negative Emotionality		f	
Low		90	
High		30	
Contingency Table of Observed Joint Frequency Distribution			
Gender	Negative Emotionality		
	Low	High	Total
Female	46	14	60
Male	44	16	60
Total	90	30	120

Table 8.2 Labeling a 2×2 Contingency Table			
Number of Rows	1	2	Row Marginals
	A^{*}	B^{*}	
	C^{*}	D^{*}	R_{2}
	C_{1}	C_{2}	N
Column marginals			

*Cell frequencies.

Table 8.3

Relationship Between Gender and Negative Emotionality: Comparing Percentages Across the IV Categories Within a DV Category

Gender (IV)	Negative Emotionality (DV)		Row Total	
	Low	High		Calculate percentages based on the marginals of the independent variable
Female	A	B	$\begin{gathered} 60 \\ 100 \% \end{gathered}$	
	46	14		
	77\%	- 23%		
Male	C	D		Compare on a category of the dependent variable across categories of the independent variable
	44 73\%	『 $\begin{gathered}16 \\ 27 \%\end{gathered}$	100\%	
Column total	90	30	$n=120$	

Table 8.5	Relationship Between Attitudes Toward School and Self-Reported Delinquency: Observed Frequencies With Percentages and Making Comparisons Across the IV Categories			
DV: Number of Self- Reported Delinquent Acts		IV: Do You	School?	Total
		Like	Dislike	
0		$\begin{gathered} 140 \\ 45 \% \end{gathered}$	$\begin{aligned} & 25 \\ & 19 \% \end{aligned}$	165
1		$\begin{gathered} 105 \\ 33 \% \end{gathered}$	$\begin{aligned} & 50 \\ & 37 \% \end{aligned}$	155
2+		$\begin{aligned} & 70 \\ & 22 \% \end{aligned}$	$\begin{aligned} & 60 \\ & 44 \% \end{aligned}$	130
Total		$\begin{aligned} & 315 \\ & 100 \% \end{aligned}$	$\begin{aligned} & 135 \\ & 100 \% \end{aligned}$	450

Table 8.6	Observed Cell Frequencies and Expected Cell Frequencies for Relationship Between Gender and Negative Emotionality		
Negative Emotionality			
Gender	Low	High	Row Total
Female	$\begin{gathered} \text { A } \\ 46 \\ f_{e}=45 \end{gathered}$	$\begin{gathered} \text { B } \\ 14 \\ f_{e}=15 \end{gathered}$	60
Male	$\begin{gathered} C \\ 44 \\ f_{e}=45 \end{gathered}$	$\begin{gathered} D \\ 16 \\ f_{e}=15 \end{gathered}$	60
Column total	90	30	$n=120$

Table 8.7	Row and Column Marginals for Gender and Negative Emotions Data Found in Table 8.6		
Negative Emotionality			
Gender	Low	High	Total
Female	$?$	$?$	60
Male	$?$	$?$	60
Total	90	30	120

Table 8.8	Determining Degrees of Freedom in a $\mathbf{2} \times \mathbf{2}$ Table: Fixing the Frequencies for the First Cell		
Negative Emotionality			

Table 8.10	Calculations for Chi-Square Statistic on Gender and Negative Emotions Data Using the Computational Formula		
fo	$f_{0}{ }^{2}$	$f_{\text {e }}$	$\frac{f_{0}^{2}}{f_{e}}$
46	2,116	45	$(2,116 / 45)=47.022$
14	196	15	$(196 / 15)=13.067$
44	1,936	45	$(1,936 / 45)=43.022$
16	256	15	$(256 / 15)=17.067$
			$\Sigma=120.178$
			$\chi^{2}=120.178-120=.178$

Table 8.11 Joint Distribu Response Tim	Joint Distribution of Neighborhood Socioeconomic Status and Police Response Time to a 911 Call for Assistance			
Police Response Time				
Neighborhood Socioeconomic Status	Less Than 3 Minutes	3-7 Minutes	More Than 7 Minutes	Total
Low	A 11	B 17	C 35	63
Medium	$\begin{gathered} \mathrm{D} \\ 16 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 24 \end{gathered}$	$\begin{gathered} F \\ 13 \end{gathered}$	53
High	G 48	H 20	$\begin{aligned} & \text { I } \\ & 7 \end{aligned}$	75
Total	75	61	55	191

Relationship Between Neighborhood Socioeconomic Status and Police Response Time to a 911 Call for Assistance: Examining Percentages

Police Response Time				
Neighborhood Socioeconomic Status	Less Than 3 Minutes	3-7 Minutes	More Than 7 Minutes	Total
Low	11	17	35	63
Medium	17%	27%	56%	100%
High	16	24	13	53
	30%	45%	25%	100%
Total	48	20	7	75

Table 8.13
Observed and Expected Cell Frequencies Under the Null Hypothesis of Independence

Police Response Time					
Neighborhood Socioeconomic Status	Less Than 3 Minutes	$3-7$ Minutes	More Than 7 Minutes	Total	
Low	11 $f_{e}=25$	17 $f_{e}=20$	35 $f_{e}=18$	63	
Medium	16	24			
	$f_{e}=21$	$f_{e}=17$	13		
High	48	20	$f_{e}=15$	53	
	$f_{e}=29$	$f_{e}=24$	$f_{e}=22$	75	
Total	75	61	55	191	

Table 8.14	Computational Formula: Calculation of the Chi-Square Statistic for the Null Hypothesis That Neighborhood Socioeconomic Status and Police Response Time Are Independent		
f_{0}	$f_{0}{ }^{2}$	$f_{\text {e }}$	$\begin{aligned} & f_{o}^{2} \\ & f_{e} \end{aligned}$
11	121	25	4.84
17	289	20	14.45
35	1,225	18	68.06
16	256	21	12.19
24	576	17	33.88
13	169	15	11.27
48	2,304	29	79.45
20	400	24	16.67
7	49	22	2.23
			$\Sigma=243.04$
			$\chi^{2}{ }_{\text {obt }}=243.04-19$
			χ^{2} obt $=52.04$

Table 8.15	Joint Distribution of Gender of Police Officer and Type of Work Performed		
Gender	Desk Job	Patrol	Total
Low	45	80	125
	36%	64%	100%
Medium	30	15	45
	67%	33%	100%
Total	75	95	170

Table 8.16 Joint Distribution for Type of Lawyer and Type of Sentence Received

Type of Lawyer	Type of Sentence Received			
	Probation	Fine Only	Fine and Jail Time	Total
Court-appointed	5	10	40	55
	9%	18%	73%	100%
Public defender	15	20	30	65
	23%	31%	46%	100%
Private	25	10	5	40
	63%	25%	12%	100%
Total	45	40	75	160

Joint Distribution of Number of Hours Worked per Week During the School Year and Number of Times a Youth Has Used Drugs or Alcohol			
Number of Times Used Drugs/Alcohol			
Number of Hours Worked per Week	0	1 or More	Total
Court-appointed	15	60	75
Public defender	40%	80%	100%
Total	57%	20	60

Person Number	Levelon V_{1}	Level on V_{2}
1	1	2
2	2	3
3	3	2
4	3	3
5	3	2

Table 8.18	Grades in School and Self-Reported Acts of Petty Theft			
Self-Reported Thefts				
Grades in School	0	1 to 5	6 or More	Total
Mostly Ds and Fs	23	19	20	62
Mostly Cs	307	157	123	587
Mostly Bs	762	345	155	1,262
Mostly As	418	166	56	640
Total	1,510	687	354	2,551

Type of Institution	Satisfied With Job?		Total
	No	Yes	
Medium security	15	30	45
Maximum security	100	40	140
Total	115	70	185

Type of Institution	Social Organization		
	Socially Disorganized	Total	
Low crime rate	90	98	188
High crime rate	10	52	62
Total	100	150	250

Type of Sentence Received	Where Defendant Was Tried Court			Suburban Court
	18	30	94	142
Fine and Court	Total			
Lail	22	37	36	95
Less than jail time of	24	38	50	112
60 or more days of jail time	16	20	40	76
Total	80	125	220	425

Race	Number of property Crimes		Total
	$0-4$	5 or More	
Non-White	77	33	110
White	180	70	250
Total	257	103	360

Number of Arrests				
Within 3 Years	Stable Employment	Sporadic Employment	Unemployed	Total
None	30	14	10	54
One or more	15	16	30	61
Total	45	30	40	115

	0-4	5-9 Adult Tattoo Adult	15 or 10-14 Adult Offeneses	More Adult Offenses	Total
No Otatoos	78	56	34	15	183
Has tattoos	15	22	37	63	137
Total	93	78	71	78	320

Table 9.1	Characteristics and Notations for Two-Sample Problems	
	Population 1	Population 2
Population mean	m_{1}	m_{2}
Population standard deviation	s_{1}	s_{2}
Sample mean	\bar{X}_{1}	\bar{X}_{2}
Sample standard deviation	s_{1}	s_{2}
Sample size	n_{1}	n_{2}

Figure 9.3 Hypothesis Test for Difference Between Two Means or Proportions

Table 9.2	Prison Expenditures per Inmate per Day by State and Region, 2011	
State		Daily Mean State Prison Operating Expenditures per Inmate (in Dollars)
West		
Nevada		56.59
Idaho		53.55
Arizona		67.96
Montana		82.81
Colorado		83.22
California		129.92
Washington		128.48
Utah		80.41
Sample Stat $\begin{aligned} & \bar{X}_{1}=85.37 \\ & s_{1}=29.33 \\ & n_{1}=8 \end{aligned}$	stics	he West
Northeast		
New Hampshire		93.37
Pennsylvania		116.00
New York		164.59
New Jersey		150.32
Vermont		135.62
Connecticut		137.70
Maine		127.13
Rhode Island		134.61
Sample Statistics for the Northeast$\begin{aligned} & \bar{X}_{2}=132.42 \\ & s_{2}=21.45 \\ & n_{2}=8 \end{aligned}$		

[^2]
Table 9.3 Steps Taken When Conducting a Hypothesis Test

Step 1: Formally state your null $\left(\mathrm{H}_{0}\right)$ and research $\left(\mathrm{H}_{1}\right)$ hypotheses.
Step 2: Select an appropriate test statistic and the sampling distribution of that test statistic.
Step 3: Select a level of significance (alpha $=\alpha$) and determine the critical value and rejection region of the test statistic based on the selected level of alpha and degrees of freedom.

Step 4: Conduct the test: Calculate the obtained value of the test statistic and compare it with the critical value.
Step 5: Make a decision about your null hypothesis and interpret this decision in a meaningful way based on the research question, sample, and population.

Figure 9.5 Critical t and Critical Region for Alpha $=.05(d f=14)$ and a Two-Tailed Test

Less Than 1 Year	More Than 1 Year
$\bar{X}_{1}=22.4$	$\bar{X}_{2}=16.2$
$s_{1}^{2}=4.3$	$s_{2}^{2}=4.1$
$n_{1}=49$	$n_{2}=53$

Figure 9.6 Critical t and Critical Region for Alpha $=.01(d f=120)$ and a One-Tailed Test

Boot Camp Group	Prison Group
$\bar{X}_{1}=15.2$ offenses	$\bar{X}_{2}=15.9$ offenses
$s_{1}^{2}=4.7$	$s_{2}^{2}=5.1$
$n_{1}=32$	$n_{2}=29$

Figure 9.7 Critical t and Critical Regions for Alpha $=.05(d f=60)$ and a Two-Tailed Test

Short-Term Detention	Long-Term Detention
$\bar{X}_{1}=6.4$	$\bar{X}_{2}=8.1$
$s_{1}=2.2$	$s_{2}=3.9$
$n_{1}=14$	$n_{2}=42$

Figure 9.8 Critical t and Critical Region for alpha $=.01(d f=40)$ and a Two-Tailed Test

Male Defendants	Female Defendants
$\bar{X}_{1}=12.02$	$\bar{X}_{2}=3.32$
$s_{1}=72.68$	$s_{2}=11.31$
$n_{1}=50$	$n_{2}=25$

Figure 9.9 Critical t and Critical Region for Alpha $=.05(d f=60)$ and a One-Tailed Test

Table 9.4
Number of Arrests for Violent Offenses in Neighborhoods Before (First Score) and After (Second Score) Implementation of Problem-Oriented Policing

Pair Number	First Score ${ }_{1}$	Second Score x_{2}	$x_{2}-x_{1}$	$\left(x_{2}-x_{1}\right)^{2}$
1	25	21	-4.00	16
2	29	25	-4.00	16
3	32	32	0.00	0
4	42	39	-3.00	9
5	21	25	4.00	16
6	29	25	-4.00	16
7	33	29	-4.00	16
8	35	36	1.00	1
9	32	29	-3.00	9
10	36	35	- 1.00	1
11	39	40	1.00	1
12	25	21	-4.00	16
13	27	25	-2.00	4
14	41	35	-6.00	36
15	36	35	- 1.00	1
16	21	23	2.00	4
17	38	31	-7.00	49
18	25	21	-4.00	16
19	29	25	-4.00	16
20	25	20	-5.00	25
			$\Sigma=-48$	$\Sigma=268$
			$\bar{X}_{D}=-2.40$	

Figure 9.10 Critical t and Critical Regions for Alpha $=.01(d f=19)$ and a Two-Tailed Test

Standard Deviations of the Sampling Distribution for the Number of
Table 9.5 Neighborhood Arrests for Violent Offenses Before (First Score) and After (Second Score) Problem-Oriented Policing Implementation

Pair	$x_{D}-\bar{X}_{D}$	$\left(x_{D}-\bar{X}_{D}\right)^{2}$
1	-4-(-2.4) = -1.60	2.56
2	$-4-(-2.4)=-1.60$	2.56
3	$0-(-2.4)=2.40$	5.76
4	$-3-(-2.4)=-0.60$	0.36
5	$4-(-2.4)=6.40$	40.96
6	$-4-(-2.4)=-1.60$	2.56
7	$-4-(-2.4)=-1.60$	2.56
8	$1-(-2.4)=3.40$	11.56
9	$-3-(-2.4)=-0.60$	0.36
10	$-1-(-2.4)=1.40$	1.96
11	$1-(-2.4)=3.40$	11.56
12	$-4-(-2.4)=-1.60$	2.56
13	$-2-(-2.4)=0.40$	0.16
14	$-6-(-2.4)=-3.60$	12.96
15	$-1-(-2.4)=1.40$	1.96
16	$2-(-2.4)=4.40$	19.36
17	$-7-(-2.4)=-4.60$	21.16
18	$-4-(-2.4)=-1.60$	2.56
19	$-4-(-2.4)=-1.60$	2.56
20	$-5-(-2.4)=-2.60$	6.76
$n=20$		$\Sigma\left(X_{D}-\bar{X}_{D 2}\right)=152.80$

Number of Delinquent Siblings for 15 Delinquent Youths and a Matched
Table 9.6 Group of 15 Non-Delinquent Youths and the Calculations Necessary for a Matched-Group t Test

Pair	Non-Delinquent Score x_{1}	Delinquent Score x_{2}	$\begin{gathered} x_{\mathrm{D}} \\ x_{2}-x_{1} \end{gathered}$	$\begin{gathered} x_{D}^{2} \\ \left(x_{2}-x_{1}\right)^{2} \end{gathered}$	$x_{D}-\bar{X}_{D}$	$\left(x_{D}-\bar{X}_{D}\right)^{2}$
1	1	3	2	4	$2-1.40=0.60$	0.36
2	0	2	2	4	$2-1.40=0.60$	0.36
3	0	1	1	1	$1-1.40=-0.40$	0.16
4	1	4	3	9	$3-1.40=1.60$	2.56
5	2	1	-1	1	$-1-1.40=-2.40$	5.76
6	0	3	3	9	$3-1.40=1.60$	2.56
7	2	2	0	0	$0-1.40=-1.40$	1.96
8	1	4	3	9	$3-1.40=1.60$	2.56
9	0	1	1	1	$1-1.40=-0.40$	0.16
10	0	2	2	4	$2-1.40=0.60$	0.36
11	0	0	0	0	$0-1.40=-1.40$	1.96
12	1	2	1	1	$1-1.40=-0.40$	0.16
13	0	2	2	4	$2-1.40=0.60$	0.36
14	1	3	2	4	$2-1.40=0.60$	0.36
15	0	0	0	0	$0-1.40=-1.40$	1.96
$n=15$			$\bar{x}_{D}=21$	$\begin{aligned} & =21 \\ & 5=1.40 \\ & =51 \end{aligned}$		$\begin{aligned} & \Sigma\left(x_{D}-\bar{X}_{D}\right)^{2}=21.60 \\ & s_{D}=\sqrt{\frac{21.60}{15-1}}=1.24 \end{aligned}$

Figure 9.11 Critical t and Critical Regions for alpha $=.05(d f=14)$ and a One-Tailed Test

Decision Chart for Using the Appropriate Statistical Test for Two-Sample Mean Problems

Figure 9.13 Critical z and Critical Regions for Alpha $=.01$ and a Two-Tailed Test

Would Not Approve of Driving Drunk	Would Approve of Driving Drunk
$n_{1}=40$	$n_{2}=25$
$x_{1}=2.1$	$x_{2}=8.2$
$s_{1}=1.8$	$s_{2}=1.9$

Judge	Untrained	Trained
1	3	0
2	1	3
3	2	4
4	7	4
5	5	2
6	4	5
7	6	1
8	2	1
9	7	0
10	5	6
11	3	4
12	4	2
13	5	5
14	6	3
15	2	1

Person	Before	After
1	5	7
2	9	5
3	2	3
4	7	7
5	8	11
6	11	13
7	8	4
8	8	10
9	5	7
10	2	1
11	9	3

Figure 10.1
Distribution of the Number of New Offenses for Three Groups of Intimate Partner Assault Suspects
(a)

(b)

Table 10.1	Number of New Offenses for Suspects Arrested, Counseled, or Separated by Police in Response to a 911 Call for Intimate Partner Assault				
Arrested	Counseled	Separated	$	$	8
:---					
0					

Total Variability		Within-Group Variability		Between-Groups Variability
$\left(x_{i}-\bar{X}_{\text {grand }}\right)$	$=$	$\left(x_{i}-\bar{X}_{k}\right)$	+	$\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)$
$(0-5)$	$=$	$(0-1)$	+	$(1-5)$
-5	$=$	-1	+	-4
-5	$=$	-5		

Total Variability		Within-Group Variability		Between-Groups Variability
$\left(x_{i}-\bar{X}_{\text {grand }}\right)$	$=$	$\left(x_{i}-\bar{X}_{k}\right)$	+	$\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)$
$(6-5)$	$=$	$(6-5)$	+	$(5-5)$
1	$=$	1	+	0
1	$=$	1		

Total Variability		Within-Group Variability		Between-Groups Variability
$\left(x_{i}-\bar{X}_{\text {grand }}\right)$	$=$	$\left(x_{i}-\bar{X}_{k}\right)$	+	$\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)$
$(8-5)$	$=$	$(8-9)$	+	$(9-5)$
3	$=$	-1	+	4
3	$=$	3		

Total Sum of Squares	
$\left(X_{i}-\bar{X}_{\text {grand }}\right)$	$\left(X_{i}-\bar{X}_{\text {grand }}\right)^{2}$
$(0-5)=-5$	25
$(2-5)=-3$	9
$(1-5)=-4$	16
$(1-5)=-4$	16
$(1-5)=-4$	16
$(6-5)=1$	1
$(4-5)=-1$	1
$(4-5)=-1$	1
$(6-5)=1$	1
$(5-5)=0$	0
$(8-5)=3$	9
$(10-5)=5$	25
$(9-5)=4$	16
$(10-5)=5$	25
$(8-5)=3$	9
	$\Sigma=170$
Within-Group Sum of Squares	
$\left(X_{i}-\bar{X}_{k}\right)$	$\left(X_{i}-\bar{X}_{k}\right)^{2}$
$(0-1)=-1$	1
$(2-1)=-1$	1
$(1-1)=0$	0
$(1-1)=0$	0
$(1-1)=0$	0
$(6-5)=1$	1
$(4-5)=-1$	1

$(4-5)=-1$	1
$(6-5)=1$	1
$(5-5)=0$	0
$(8-9)=-1$	1
$(10-9)=1$	1
$(9-9)=0$	0
$(10-9)=1$	1
$(8-9)=-1$	1
	$\left.\bar{X}_{k}-\bar{X}_{\text {grand }}\right)^{2}$
	Between-Groups Sum of Squares
$\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)$	16
$(1-5)=-4$	16
$(1-5)=-4$	16
$(1-5)=-4$	16
$(1-5)=-4$	16
$(1-5)=-4$	0
$(5-5)=0$	0
$(5-5)=0$	0
$(5-5)=0$	0
$(5-5)=0$	0
$(5-5)=0$	16
$(9-5)=4$	16
$(9-5)=4$	16
$(9-5)=4$	16
$(9-5)=4$	160
$(9-5)=4$	

Table 10.3	Summary F Table for Police Response to Domestic Violence Data			
Source Sum of Squares df Variance F				
Between groups	160	2	80.00	96.39
Within group	10	12	0.83	
Total	170	14		

Table 10.4	Size of Probation Officer Caseload and Number of Crimes and Violations Committed on Release					
	Caseload Supervision Size	$	$	Low	Moderate	Heavy
:---:	:---:	:---:				
7	10	11				
12	14	8				
13	8	7				
5	9	10				
8	13	9				
11	12	7				
10	8	8				
14	8	3				
9	$\bar{X}_{\text {moderate }}=10.0$	$\bar{X}_{\text {neavy }}=7.5$				
$\bar{X}_{\text {low }}=9.5$		3				

Table 10.5 Calculations for Caseload Size and Probation Success

Total Sum of Squares		Within-Group Sum of Squares		Between-Groups Sum of Squares	
$\left(X_{i}-\bar{X}_{\text {grand }}\right)$	$\left(X_{i}-\bar{X}_{\text {grand }}\right)^{2}$	$\left(X_{i}-\bar{X}_{k}\right)$	$\left(X_{i}-\bar{X}_{k}\right)^{2}$	$\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)$	$\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)^{2}$
$7-9=-2$	4	$7-9.5=-2.5$	6.25	$9.5-9=0.5$	0.25
$12-9=3$	9	$12-9.5=2.5$	6.25	$9.5-9=0.5$	0.25
$13-9=4$	16	$13-9.5=3.5$	12.25	$9.5-9=0.5$	0.25
$5-9=-4$	16	$5-9.5=-4.5$	20.25	$9.5-9=0.5$	0.25
$8-9=-1$	1	$8-9.5=-1.5$	2.25	$9.5-9=0.5$	0.25
$11-9=2$	4	$11-9.5=1.5$	2.25	$9.5-9=0.5$	0.25
$10-9=1$	1	$10-9.5=0.5$	0.25	$9.5-9=0.5$	0.25
$14-9=5$	25	$14-9.5=4.5$	20.25	$9.5-9=0.5$	0.25
$9-9=0$	0	$9-9.5=-0.5$	0.25	$9.5-9=0.5$	0.25
$6-9=-3$	9	$6-9.5=-3.5$	12.25	$9.5-9=0.5$	0.25
$10-9=1$	1	$10-10=0$	0.00	$10-9=1$	1.00
$14-9=5$	25	$14-10=4$	16.00	$10-9=1$	1.00
$8-9=-1$	1	$8-10=-2$	4.00	$10-9=1$	1.00
$7-9=-2$	4	$7-10=-3$	9.00	$10-9=1$	1.00
$9-9=0$	0	$9-10=-1$	1.00	$10-9=1$	1.00
$11-9=2$	4	$11-10=1$	1.00	$10-9=1$	1.00
$13-9=4$	16	$13-10=3$	9.00	$10-9=1$	1.00
$12-9=3$	9	$12-10=2$	4.00	$10-9=1$	1.00
$8-9=-1$	1	$8-10=-2$	4.00	$10-9=1$	1.00
$8-9=-1$	1	$8-10=-2$	4.00	$10-9=1$	1.00
$11-9=2$	4	$11-7.5=3.5$	12.25	$7.5-9=-1.5$	2.25
$8-9=-1$	1	$8-7.5=0.5$	0.25	$7.5-9=-1.5$	2.25
$7-9=-2$	4	$7-7.5=-0.5$	0.25	$7.5-9=-1.5$	2.25
$10-9=1$	1	$10-7.5=2.5$	6.25	$7.5-9=-1.5$	2.25
$9-9=0$	0	$9-7.5=1.5$	2.25	$7.5-9=-1.5$	2.25
$9-9=0$	0	$9-7.5=1.5$	2.25	$7.5-9=-1.5$	2.25
$7-9=-2$	4	$7-7.5=-0.5$	0.25	$7.5-9=-1.5$	2.25
$8-9=-1$	1	$8-7.5=0.5$	0.25	$7.5-9=-1.5$	2.25
$3-9=-6$	36	$3-7.5=-4.5$	20.25	$7.5-9=-1.5$	2.25
$3-9=-6$	36	$3-7.5=-4.5$	20.25	$7.5-9=-1.5$	2.25
	$\Sigma=234$		$\Sigma=199$		$\Sigma=35$

$\left.$| Table 10.6 |
| :--- | | Summary F Table for the Relationship Between |
| :--- |
| Caseload Size and Success on Probation | \right\rvert\,

Level of Stress		
High	Medium	Low
x	x	x
4	2	3
6	4	1
12	5	2
10	3	0
5	3	2
9	2	2
8	5	4
11	4	1
10		0
8		1

Get Tough States	Moral Appeal States	Control States
$n_{1}=15$	$n_{2}=15$	$n_{3}=15$
$\bar{X}_{1}=125.2$	$\bar{X}_{2}=119.7$	$\bar{X}_{3}=145.3$

	Sum of Squares	df	SS/df	F
Between groups	475.3			
Within group	204.5			
Total	679.8			

	Very High Fear	High Fear	Medium Fear	Low Fear	Very Low Fear Spot
Spot	Spot	Spot	Spot		

Sum of Squares	df	SS/df	F	
Between groups	12.5			
Within group	616.2			
Total	628.7			

How Many Friends Each Female Has		
A Lot	Some	A Few
5	7	2
8	5	3
9	4	0
4	9	3
7	6	1
10	4	3
6	7	2

Observation	x Score	y Score
1	3	3
2	5	5
3	2	2
4	4	4
5	8	8
6	10	10
7	7	1
8	6	7
9	9	9
10		

Observation	x Score	y Score
1	2	9
2	4	7
3	9	2
4	7	4
5	8	3
6	1	10
7	6	6
8	10	5
9	3	8
10		1

Figure 11.1 Positive Relationship Between x and y

Figure 11.2 Negative Relationship Between x and y

Observation	x Score	y Score
1	6	4
2	9	4
3	2	4
4	7	4
5	3	4
6	4	4
7	8	4
8	5	4
9	10	4
10		

Figure 11.3 No Relationship Between x and y

Figure 11.4 Perfect Positive Relationship Between x and y

Figure 11.5 Perfect Negative Relationship Between x and y

Figure 11.6 No Relationship Between x and y

Figure 11.7 Predicting y Scores (\hat{y}) from x Scores With Perfect Positive Correlation

Figure 11.8 Predicting y Scores (\hat{y}) from x Scores With No Correlation

Table 11.1	Murder Rate per 100,000 and Percentage of Individuals in State Living Below the Poverty Level for 20 States, 2013	
State	Murder Rate (y)	Poverty Rate (x)
Alaska	3.2	9.0
Arizona	5.5	16.5
California	5.4	14.2
Delaware	4.6	10.8
Florida	5.5	14.9
Indiana	5.3	14.4
Louisiana	12.3	17.3
Maine	2.0	12.3
Maryland	7.7	9.1
Massachusetts	2.7	10.3
Michigan	6.3	16.2
Missouri	6.6	14.6
Nebraska	2.5	12.3
New Jersey	3.7	9.4
New Mexico	10.0	18.0
New York	4.0	14.2
Pennsylvania	5.4	12.5
South Carolina	6.7	17.1
Texas	5.4	17.2
Wyoming	2.0	9.8

Source: Adapted from the Uniform Crime Reports and Population by Age and Sex from the FBI (2014) and the U.S. Bureau of the Census (2014), respectively.

Figure 11.9 Scatterplot of Poverty Rate (x) and Murder Rate (y) for 20 States

Scatterplot of Poverty Rate (x) and Murder Rate (y) for 20 States With Regression Line

Table 11.2

Robbery Rate per 100,000 and Percentage of Individuals in State Living in Rural Areas for 20 States, 2013

State	Robbery Rate (y)	\% Rural (x)
Alaska	94.0	30.4
Arizona	123.9	9.5
California	173.7	5.1
Delaware	189.7	17.4
Florida	166.8	9.1
Indiana	129.4	27.4
Louisiana	142.3	27.0
Maine	30.3	57.4
Maryland	210.7	12.8
Massachusetts	114.1	8.4

State	Robbery Rate (y)	\% Rural (x)
Michigan	126.5	25.5
Missouri	127.1	28.6
Nebraska	74.7	28.4
New Jersey	133.7	5.4
New Mexico	98.7	22.1
New York	144.5	12.3
Pennsylvania	142.4	22.2
South Carolina	126.0	34.3
Texas	153.6	14.5
Wyoming	14.3	30.5

Source: Adapted from the Uniform Crime Reports and Population by Age and Sex from the FBI (2014) and the U.S. Bureau of the Census (2014), respectively.

Scatterplot of Percentage Rural (x) and Robbery Rate (y) for 20 States With Regression Line

Table 11.3

Burglary Rate per 100,000 and Divorce Rate per 1,000 in State Living in Rural Areas for 20 States, 2013

State	Burglary Rate (y)	Divorce Rate (x)
Alaska	514.2	7.8
Arizona	817.3	5.4
California	622.1	5.8
Delaware	784.0	5.4
Florida	981.2	7.5
Indiana	815.9	7.9
Louisiana	1036.4	7.1
Maine	510.4	7.2
Maryland	647.5	5.8
Massachusetts	524.1	5.5

State	Burglary Rate (y)	Divorce Rate (x)
Michigan	768.1	5.4
Missouri	733.5	6.5
Nebraska	499.4	6.7
New Jersey	424.2	5.1
New Mexico	1117.3	5.1
New York	321.6	6.4
Pennsylvania	439.2	5.3
South Carolina	991.7	7.4
Texas	967.4	7.1
Wyoming	399.8	8.2

Source: Adapted from the Uniform Crime Reports and Population by Age and Sex from the FBI (2014) and the U.S. Bureau of the Census (2014), respectively.

Scatterplot of Divorce (x) and Burglary Rate (y) for 20 States With Regression Line

Figure 11.13 Interpretation of Pearson's r Values

-1	-.7	-.5	-.3	0	-.3	+.5	+.7	+1

Perfect Negative
Moderate to Strong Negative
Moderate Negative
Weak to Moderate Negative
No Relationship
Weak to Moderate Positive
Moderate Positive
Moderate to Strong Positive

Table 11.4
Calculation of Pearson Correlation Coefficient, r, for Correlation Between State Murder Rate and Poverty Rate (Table 11.1)

State	Poverty Rate (x)	Murder Rate (y)	χ^{2}	y^{2}	xy
Alaska	9.0	3.2	81.0	10.2	28.8
Arizona	16.5	5.5	272.3	30.3	90.8
California	14.2	5.4	201.6	29.2	76.7
Delaware	10.8	4.6	116.6	21.2	49.7
Florida	14.9	5.5	222.0	30.3	82.0
Indiana	14.4	5.3	207.4	28.1	76.3
Louisiana	17.3	12.3	299.3	151.3	212.8
Maine	12.3	2.0	151.3	4.0	24.6
Maryland	9.1	7.7	82.8	59.3	70.1
Massachusetts	10.3	2.7	106.1	7.3	27.8
Michigan	16.2	6.3	262.4	39.7	102.1
Missouri	14.6	6.6	213.2	43.6	96.4
Nebraska	12.3	2.5	151.3	6.3	30.8
New Jersey	9.4	3.7	88.4	13.7	34.8
New Mexico	18.0	10.0	324.0	100.0	180.0
New York	14.2	4.0	201.6	16.0	56.8
Pennsylvania	12.5	5.4	156.3	29.2	67.5
South Carolina	17.1	6.7	292.4	44.9	114.6
Texas	17.2	5.4	295.8	29.2	92.9
Wyoming	9.8	2.0	96.0	4.0	19.6
$n=20$	$\Sigma x=270.1$	$\Sigma y=106.8$	$\Sigma x^{2}=3,821.8$	$\Sigma y^{2}=697.8$	$\Sigma x y=1,535.1$

Table 11.5
Calculation of Pearson Correlation Coefficient, r, for Correlation Between Percentage of Population Living in Rural Areas in a State and Rate of Robbery for 20 States (Table 11.2)

State	Rural Area (\%) (x)	Robbery Rate (y)	x^{2}	y^{2}	$x y$
Alaska	30.4	94.0	924.2	8836.0	2857.6
Arizona	9.5	123.9	90.3	15351.2	1177.1
California	5.1	173.7	26.0	30171.7	885.9
Delaware	17.4	189.7	302.8	35986.1	3300.8
Florida	9.1	166.8	82.8	27822.2	1517.9
Indiana	27.4	129.4	750.8	16744.4	3545.6
Louisiana	27.0	142.3	729.0	20249.3	3842.1
Maine	57.4	30.3	3294.8	918.1	1739.2
Maryland	12.8	210.7	163.8	44394.5	2697.0
Massachusetts	8.4	114.1	70.6	13018.8	958.4
Michigan	25.5	126.5	650.3	16002.3	3225.8
Missouri	28.6	127.1	818.0	16154.4	3635.1
Nebraska	28.4	74.7	806.6	5580.1	2121.5
New Jersey	5.4	133.7	29.2	17875.7	722.0
New Mexico	22.1	98.7	488.4	9741.7	2181.3
New York	12.3	144.5	151.3	20880.3	1777.4
Pennsylvania	22.2	142.4	492.8	20277.8	3161.3
South Carolina	34.3	126.0	1176.5	15876.0	4321.8
Texas	14.5	153.6	210.3	23593.0	2227.2
Wyoming	30.5	14.3	930.3	204.5	436.2
$n=20$	$\Sigma x=428.3$	$\Sigma y=2,516.4$	$\Sigma x^{2}=12,188.8$	$\Sigma y^{2}=359,678.1$	$\Sigma x y=46,331.2$

Table 11.6

Calculation of Pearson Correlation Coefficient, r, for Correlation Between Divorce Rate in a State and Rate of Burglary for 20 States (Table 11.3)

State	Divorce Rate (x)	Burglary Rate (y)	x^{2}	y^{2}	$x y$
Alaska	7.8	514.2	60.8	264401.6	4010.8
Arizona	5.4	817.3	29.2	667979.3	4413.4
California	5.8	622.1	33.6	387008.4	3608.2
Delaware	5.4	784.0	29.2	614656.0	4233.6
Florida	7.5	981.2	56.3	962753.4	7359.0
Indiana	7.9	815.9	62.4	665692.8	6445.6
Louisiana	7.1	1036.4	50.4	1074125	7358.4
Maine	7.2	510.4	51.8	260508.2	3674.9
Maryland	5.8	647.5	33.6	419256.3	3755.5
Massachusetts	5.5	524.1	30.3	274680.8	2882.6
Michigan	5.4	768.1	29.2	589977.6	4147.7
Missouri	6.5	733.5	42.3	538022.3	4767.8
Nebraska	6.7	499.4	44.9	249400.4	3346.0
New Jersey	5.1	424.2	26.0	179945.6	2163.4
New Mexico	5.1	1117.3	26.0	1248359	5698.2
New York	6.4	321.6	41.0	103426.6	2058.2
Pennsylvania	5.3	439.2	28.1	192896.6	2327.8
South Carolina	7.4	991.7	54.8	983468.9	7338.6
Texas	7.1	967.4	50.4	935862.8	6868.5
Wyoming	8.2	399.8	67.2	159840.0	3278.4
$n=20$	$\Sigma x=128.6$	$\Sigma y=13,915.3$	$\Sigma x^{2}=847.5$	$\Sigma y^{2}=10,772,261.6$	$5 x y=89,736.6$

Table 11.7 Hypothetical Data for 20 Students

Student	Age (x)	Self-Reported Delinquency (y)
1	12	0
2	12	2
3	12	1
4	12	3
5	13	4
6	13	2
7	13	1
8	14	2
9	14	5
10	14	4
11	15	3
12	15	4
13	15	6
14	15	8
15	16	9
16	16	7
17	16	6
18	17	8
19	17	10
20	17	7

Figure 11.14 Age (x) and Number of Self-Reported Delinquent Acts (y)

Table 11.8	Conditional Means (means of \boldsymbol{y} for fixed values of \boldsymbol{x}) for the Data on Age and Self-Reported Delinquency					
Age	y Scores	Conditional \bar{Y}	$	$	12	$0,1,2,3$
:---:	:---:					
13	$4,2,1$					
14	$2,5,4$					
15	$9,4,6,8$					
16	$8,10,7$					
17						

Figure 11.16 Distance Between Conditional Means of y and Estimated Regression Line

Table 11.9
Calculations for Determining the Slope (b) for the Data on Age and SelfReported Delinquency

ID Number	Age (x)	Self-Reported Delinquency (y)	x^{2}	xy
1	12	0	144	0
2	12	2	144	24
3	12	1	144	12
4	12	3	144	36
5	13	4	169	52
6	13	2	169	26
7	13	1	169	13
8	14	2	196	28
9	14	5	196	70
10	14	4	196	56
11	15	3	225	45
12	15	4	225	60
13	15	6	225	90
14	15	8	225	120
15	16	9	256	144
16	16	7	256	112
17	16	6	256	96
18	17	8	289	136
19	17	10	289	170
20	17	7	289	119
$n=20$	$\Sigma x=288$	$\Sigma y=92$	$\Sigma x^{2}=4,206$	$\Sigma x y=1,409$

Fitting the Regression Line to the Data for Percentage Rural (x) and Robbery Rate (y) for 20 States Using the Regression Equation $y=179.5+-2.51(x)$

Fitting the Regression Line to the Data for Divorce Rate (x) and Burglary Rate (y) for 20 States Using the Regression Equation $y=614.24+-12.68(x)$

Self-Control (x)	Self-Reported Delinquency (y)
45	5
63	10
38	2
77	23
82	19
59	7
61	17
88	24
52	14
67	20

Police Response Time in Minutes (x)	Community Rate of Crime per 1,000 (y)
14	82.9
3	23.6
5	42.5
6	39.7
5	63.2
8	51.3
7	58.7
4	44.5
10	61.2
12	73.5

Community Number	Percentage on Welfare (x)	Hours of Daily Police Patrol (y)
1	40	20
2	37	15
3	32	20
4	29	20
5	25	15
6	24	20
7	15	15
8	12	20
9	4	10
10	2	20
11		40
12		50

Data From a Hypothetical Study Examining the Relationship Between
Figure 12.2 Attending a Boot Camp Prison and the Likelihood of Committing Crimes After Prison (Recidivating)

All Prisoners, $n=350$

Attended Boot Camp	Did Not Attend Boot Camp	
Recidivated	75	105
Did Not	47%	55%
Recidivate	85	85
	53%	45%

Female Prisoners, $n=150$
Male Prisoners, $n=200$

Recidivated

Did Not
Recidivate

Female Prisoners, $n=150$		Male Prisoners, $n=200$ Attended Boot Camp	
Did Not Attend			
40	20	Attended Boot Camp	Did Not Attend
40%	40%	30	90
60	30	60%	60%
60%	60%	20	60

Table 12.1
Calculations Necessary to Compute the Partial Slope Coefficient
Between Delinquency and Both Age and Family Closeness ($n=23$)

Delinquency y	Age x_{1}	Family Closeness x_{2}	y^{2}	χ_{1}^{2}	x_{2}^{2}	$x_{1} y$	$x_{2} y$
80	17	10	6,400	289	100	1,360	800
60	15	20	3,600	225	400	900	1,200
50	14	25	2,500	196	625	700	1,250
70	17	15	4,900	289	225	1,190	1,050
10	13	35	100	169	1,225	130	350
15	13	30	225	169	900	195	450
20	14	28	400	196	784	280	560
5	13	40	25	169	1,600	65	200
70	13	15	4,900	169	225	910	1,050
55	14	20	3,025	196	400	770	1,100
40	15	25	1,600	225	625	600	1,000
35	16	20	1,225	256	400	560	700
10	17	30	100	289	900	170	300
15	16	25	225	256	625	240	375
10	14	20	100	196	400	140	200
15	16	25	225	256	625	240	375
0	14	25	0	196	625	0	0
0	13	35	0	169	1,225	0	0
20	14	20	400	196	400	280	400
0	13	20	0	169	400	0	0
20	14	30	400	196	900	280	600
45	16	30	2,025	256	900	720	1,350
50	17	25	2,500	289	625	850	1,250
$\Sigma=695$	$\Sigma=338$	$\Sigma=568$	$\Sigma=34,875$	$\Sigma=5,016$	$\Sigma=15,134$	$\Sigma=10,580$	$\Sigma=14,560$
$\begin{aligned} & \bar{Y}=30.22 \\ & s_{y}=25.11 \\ & r_{y x_{1}}=.445 \\ & r_{y x_{2}}=-.664 \\ & r_{x_{1} x_{2}}=-.366 \end{aligned}$	$\begin{aligned} & \bar{X}_{x_{1}}=14.70 \\ & s_{x_{1}}=1.49 \end{aligned}$	$\begin{aligned} & \bar{X}_{x_{2}}=24.70 \\ & s_{x_{2}}=7.09 \end{aligned}$					

Multiple Regression Output From SPSS Predicting Delinquency by Age and Family Closeness

Regression

Variables Entered/removed ${ }^{\text {a }}$

Model	Variables Entered	Variable Removed	Method
1	Family Attachments, Age $^{\mathrm{b}}$		Enter

a. Dependent variable: Delinquency
b. All requested variables entered.

a. Predicators: (Constant),Family Attachments, Age

F Statistics and corresponding sig/alpha for the Null Hypothesis that $\mathrm{R}^{2}=0$

Model		Sum of Square	df	Mean Square	F	Sig
1	Regression	6777.010	2	3388.505	9.549	$.001^{\mathrm{b}}$
	Residual	7096.903	20	354.845		
	Total	13873.913	22			

a. Dependent Variable: Delinquency
b. Predicators: (Constant),Family Attachments, Age

Hypothetical Inmate-to-Inmate Assault Rates per 100 Inmate Population, Prison Density Index (overcrowding), and Mean Age of Inmates for a Random Sample of 30 Prisons

Case	Prison	Assault Rate y	Density Index X_{1}	Mean Age X_{2}
1	Prison A	10.2	1.5	25.8
2	Prison B	8.2	1.0	32.1
3	Prison C	11.3	1.6	26.2
4	Prison D	9.2	1.2	29.6
5	Prison E	5.3	1.0	34.5
6	Prison F	8.5	1.1	27.5
7	Prison G	8.6	1.3	30.2
8	Prison H	7.5	0.9	33.2
9	Prison I	15.3	1.9	27.2
10	Prison J	10.5	1.5	26.3
11	Prison K	12.5	1.5	28.3
12	Prison L	5.4	1.1	32.3
13	Prison M	10.5	1.4	23.5
14	Prison N	15.4	1.4	24.5
15	Prison O	12.8	1.2	24.5
16	Prison P	13.5	1.3	27.5
17	Prison Q	17.5	1.8	25.8
18	Prison R	11.5	1.6	32.6
19	Prison S	19.0	1.4	21.2
20	Prison T	14.2	1.2	26.5
21	Prison U	11.4	1.6	32.0
22	Prison V	9.8	1.1	29.9
23	Prison W	6.6	0.9	36.2
24	Prison X	8.9	1.0	35.0
25	Prison Y	10.6	1.1	29.8
26	Prison Z	12.5	1.2	25.6
27	Prison AA	7.4	1.1	33.5
28	Prison BB	3.3	1.2	38.2
29	Prison CC	17.5	1.7	25.2
30	Prison DD	13.2	0.9	33.1
		$\Sigma_{y}=328.10$	$\Sigma x_{1}=38.7$	$\Sigma x_{2}=877.80$
		$\bar{Y}=10.94$	$\bar{X}_{x_{1}}=1.29$	$\bar{X}_{x_{2}}=29.26$
		$s_{y}=3.78$	$s_{x_{1}}=.27$	$s_{x_{2}}=4.19$
		$\Sigma y^{2}=4002.07$	$\Sigma x_{1}^{2}=52.11$	$\Sigma x_{2}^{2}=26,193.2$
	$\Sigma y x_{1}=441.7$	$\Sigma y x_{2}=9,251.0$	$\Sigma x_{1} x_{2}=1,114.2$	
	$r_{y x_{1}}=.61$	$r_{y x_{2}}=-.76$	$r_{x_{1} x_{2}}=-.55$	

Figure 12.5
Multiple Regression Output From SPSS Predicting Inmate-to-Inmate Assaults in Prison by Mean Age in the Prison and Overcrowding

Regression

Variables Entered/Removed ${ }^{\text {a }}$

Model	Variables Entered	Variables Removed	Method
1	Mean Age of inmates, Overcrowding index		Enter

a. Dependent Variable: Inmate to Inmate Assault Rate
b. All requested variables entered.

a. Predictors, (Constant),Mean Age of Inmates Overcrowding Index

F Statistic and corresponding sig/alpha for the Null Hypothesis that $R^{2}=0$

Model		Sum of Squares	ANOVA $^{\text {a }}$	df	Mean Square	F
1	Regression	261.556	2	130.778	23.201	$.000^{\mathrm{b}}$
	Residual	152.193	27	5.637		
	Total	413.750	29			

a. Dependent Variable: Inmate to Inmate Assault Rate
b. Predictors: (Constant), Mean Age of Inmates, Overcrowding Index

Data and Calculations Necessary to Compute the Partial Slope Coefficient
Table 12.3
Among Murder Rates, Poverty Rate, and South Region ($0=$ Non-South, 1 = South) for $n=20$ States

Case	State	Murder Rate y	Percentage Poor χ_{1}	Southern Region x_{2}
1	Alaska	3.2	9.0	0
2	Arizona	5.5	16.5	0
3	California	5.4	14.2	0
4	Delaware	4.6	10.8	1
5	Florida	5.5	14.9	1
6	Indiana	5.3	14.4	0
7	Louisiana	12.3	17.3	1
8	Maine	2.0	12.3	0
9	Maryland	7.7	9.1	1
10	Massachusetts	2.7	10.3	0
11	Michigan	6.3	16.2	0
12	Missouri	6.6	14.6	0
13	Nebraska	2.5	12.3	0
14	New Jersey	3.7	9.4	0
15	New Mexico	10.0	18.0	0
16	New York	4.0	14.2	0
17	Pennsylvania	5.4	12.5	0
18	South Carolina	6.7	17.1	1
19	Texas	5.4	17.2	1
20	Wyoming	2.0	9.8	0
		$\Sigma_{y}=106.8$	$\Sigma x_{1}=270.1$	$\Sigma x_{2}=6$
		$\bar{Y}=5.34$	$\bar{X}_{x_{1}}=13.5$	$\bar{X}_{x_{2}}=.30$
		$s_{y}=2.59$	$s_{x_{1}}=3.03$	$s_{x_{2}}=.47$
		$\Sigma y^{2}=697.4$	$\Sigma x_{1}^{2}=3821.8$	$\Sigma x_{2}^{2}=6$
	$\Sigma y x_{1}=1534.8$	$\Sigma y x_{2}=42.2$	$\Sigma x_{1} x_{2}=86.4$	
	$r_{y x_{1}}=.62$	$r_{y \times 2}=.44$	$\begin{aligned} & r_{y_{1} x_{2}}=.56 \\ & r_{x_{1} x_{2}}=.20 \end{aligned}$	

Variables Entered/Removed ${ }^{\text {a }}$

Model	Variables Entered	Variables Removed	Method
1	State in South, Percent Individuals below poverty		Enter

a. Dependent Variable: Murder Rate per 100K
b. All requested variables entered.

Model Summary					
Model R Square Adjusted R Square 1 $.700^{\mathrm{a}}$.490 Std. Error of the Estimate					

a. Predictors: (Constant), State in South, Percent Individuals below poverty

ANOVA ${ }^{a}$

Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	62.298	2	31.149	8.170	$.003^{\mathrm{b}}$
Residual	64.810	17	3.812		
Total	127.108	19			

a. Dependent Variable: Murder Rate per 100K
b. Predictors: (Constant), State in South, Percent Individuals below poverty

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std.Error			
1 (Constant)	-1.617	2.049		-. 789	. 441
Percent Individuals below poverty	. 475	. 151	. 556	3.145	. 006
State in South	1.812	. 972	. 329	1.864	. 080

[^3]Figure 12.7
Multiple Regression Output for Problem 1: Predicting the Violent Crime Rate for States

Variables Entered/Removed $^{\text {a }}$			
Model	Variables Entered	Variables Removed	Method
1	Divorce Mean Age		Enter

Model Summary					
Model	R	R Rquare	Adjusted R Square	Std. Error of the Estimate	
1	$.795^{a}$.632	.609	1.9525	

a. Predictors: (Constant), Divorce, Mean Age

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	324.538	2	162.26	27.531	$.000^{\circ}$
Residual	188.604	20	5.893		

a. Dependent Variable: Violent Crime Rate per 100,000
b. Predictors: (Constant), Divorce, Mean Age

$$
\text { Coefficients }{ }^{8}
$$

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
	B	Std. Error			
1 (Constant)	19.642	2.736		. 600	. 552
Divorce	. 871	. 119	. 594	4.268	. 000
Mean Age	-. 146	. 158	-. 133	-3.110	. 001

Jail	\# of Escapes	Morale Score	Staff-toInmate Ratio
1	12.00	3.00	. 22
2	10.00	7.00	. 41
3	3.00	14.00	. 66
4	7.00	8.00	. 45
5	9.00	9.00	. 32
6	13.00	5.00	. 33
7	17.00	2.00	. 10
8	12.00	5.00	. 30
9	15.00	4.00	. 20
10	9.00	5.00	. 50
11	3.00	7.00	. 60
12	5.00	3.00	. 40
13	11.00	2.00	. 20
14	14.00	5.00	. 50
15	7.00	8.00	. 40
16	10.00	5.00	. 20
17	14.00	3.00	. 30
18	15.00	2.00	. 40
19	17.00	2.00	. 10
20	6.00	8.00	. 20
21	9.00	4.00	. 20
22	3.00	10.00	. 50
23	2.00	11.00	. 60
24	4.00	7.00	. 30
25	13.00	2.00	. 30
26	11.00	8.00	. 50
27	14.00	4.00	. 30
28	9.00	4.00	. 30
29	5.00	11.00	. 40
30	4.00	14.00	. 50

$\Sigma_{y}=283$	$\Sigma_{x_{1}}=182$	$\Sigma_{x_{2}}=10.7$
$s_{y}=4.49$	$s_{x_{1}}=3.47$	$s_{x_{2}}=.15$
$\bar{y}=9.43$	$\bar{x}_{1}=6.07$	$\bar{x}_{2}=.36$
$\Sigma y^{2}=3255$	$\Sigma x_{x_{1}}^{2}=1454$	$\Sigma x_{x_{1}}^{2}=4.44$
	$r_{y x_{1}}=-.77$	
	$r_{y x_{2}}=-.63$	
	$r_{x_{1 \times} x_{2}}=.67$	
$r_{y x_{1}, x_{2}}=-.59$	$r_{y x_{2}, x_{1}}=-.245$	

Figure 12.8 Multiple Regression Output for Problem 3: Jurors' Religious Characteristics and Their Verdicts and Sentencing Decisions

Model	Variables Entered	Variables Removed	Method
	1	ENV, REL	

	Model Summary		
Model	R	R Square	Adjusted R Square
1	$.811^{a}$.659	602

a. Predictors: (Constant), ENV, REL

ANOVA $^{\text {a }}$						
Model	Sum of Squares	df	Mean Square	F	Sig.	
1 Regression	481.341	2	240.670	11.565	$.001^{\text {b }}$	
Residual	249.058	12	20.754			

Coefficients ${ }^{2}$

+	Addition	$>$	Is greater than
-	Subtraction	\geq	Is greater than or equal to
\times	Multiplication	\approx	Is approximately equal to
$/$ or \div	Division	x^{2}	The number x squared
$=$	Equals	$\sqrt{ } x$	The square root of the number x
\neq	Is not equal to	In x	The natural log of the number x
\pm	Plus or minus	$\log x$	The common log of the number x
$<$	Is less than	$\|x\|$	The absolute value of the number x
\leq	Is less than or equal to		

Uppercase	Lowercase	
A	α	Alpha
B	β	Beta
「	γ	Gamma
Δ	δ	Delta
E	ε	Epsilon
Λ	μ	Lambda
M	ρ	Mu
P	τ	Rho
Σ	ϕ	Sigma
T	χ	Tau
Φ	Phi	
X	Chi	

		M	Nơo이융 ద్ల్లస్గంగస్ఠ		낭상우웅ㅅN 			앵Nㅇㅇㅇㅇㄱㅜ 	뇨NㅇN이
 		오운엉́ㅇ 	 	댕ㅇㅇ우ㅇㅜㅜ 寸 fơN N్N	Min NiNo oino	숭№m	BNininco		융ㅇNN్ల 웃융ㅇㅇㅇ
OిOMN:		ల్లి야양눈 	Niobion	BioNo No			M్ల్రీస్లఱ్ల్ల －ơm in	N్లNㅓㅓㅇㅜNN ©omion	RONONN웅 ©
 		かNiNN Nomoㅜㅇ		 					「～웅ㅇNN Ninco
꿍NNN양ㅇㅇ 	NMon			がウㅜㅜ유우		 	우N～～N べかっすく		毋ioㅇㅇㅇㅇㅜ すべ
잉NㅇNㅇN 	No NiNo あむ心毎権	దoneninion 	Nôobざ 	ゅかった寸 © O O	No 	운웅우웅	প్ల్రీ ஜobicoodid		NiNمmo
セNNJポ 		NNNNㅇ NoNiOn in N	niñNㅜㅇ 	읏등 N్ల్లి		 	융웅유욱 	 ロロッローか	
	 	 		 			Nิ웅후운	 	웅융NNNNN
뭉N웅ㅇㅇㅇ かするどN							생ㅅㅇㅇ우눙	దino గ్గ수N్ల్ర	
－్ల్గ్య్ర్లN 	Nowo		nonNon ద్ద్ల్లు	NォOํN人Nণ			かロํํ순 o్ల융్ㅇㅎㅓ	o్ర	
		さNセ゚Nす 욱ㅇ№̛ になNoN	 	以ーが品守 		士心ㅁㅇㅇㅇㅇㅇ 엉 ふのON	 		
웅흥웅ㅇㅇ © $\quad \infty$	OONON 	পoncooiq 	ฯ～ㅛㅇㅇㅇํ No			Ooo N-in Co		© it inco 시우웅్ల	
すめo			ヘロット゚ 		 		৪iower N్ల్우우웅	 	チ

Table B. 2 Area Under the Standard Normal Curve (z Distribution)*

| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | .0000 | .0040 | .0080 | .0120 | .0160 | .0199 | .0239 | .0279 | .0319 | .0359 |
| 0.1 | .0398 | .0438 | .0478 | .0517 | .0557 | .0596 | .0636 | .0675 | .0714 | .0753 |
| 0.2 | .0793 | .0832 | .0871 | .0910 | .0948 | .0987 | .1026 | .1064 | .1103 | .1141 |
| 0.3 | .1179 | .1217 | .1255 | .1293 | .1331 | .1368 | .1406 | .1443 | .1480 | .1517 |
| 0.4 | .1554 | .1591 | .1628 | .1664 | .1700 | .1736 | .1772 | .1808 | .1844 | .1879 |
| 0.5 | .1915 | .1950 | .1985 | .2019 | .2054 | .2088 | .2123 | .2157 | .2190 | .2224 |
| 0.6 | .2257 | .2291 | .2324 | .2357 | .2389 | .2422 | .2454 | .2486 | .2517 | .2549 |
| 0.7 | .2580 | .2611 | .2642 | .2673 | .2704 | .2734 | .2764 | .2794 | .2823 | .2852 |
| 0.8 | .2881 | .2910 | .2939 | .2967 | .2995 | .3023 | .3051 | .3078 | .3106 | .3133 |
| 0.9 | .3159 | .3186 | .3212 | .3238 | .3264 | .3289 | .3315 | .3340 | .3365 | .3389 |
| 1.0 | .3413 | .3438 | .3461 | .3485 | .3508 | .3531 | .3554 | .3577 | .3599 | .3621 |
| 1.1 | .3643 | .3665 | .3686 | .3708 | .3729 | .3749 | .3770 | .3790 | .3810 | .3830 |
| 1.2 | .3849 | .3869 | .3888 | .3907 | .3925 | .3944 | .3962 | .3980 | .3997 | .4015 |
| 1.3 | .4032 | .4049 | .4066 | .4082 | .4099 | .4115 | .4131 | .4147 | .4162 | .4177 |
| 1.4 | .4192 | .4207 | .4222 | .4236 | .4251 | .4265 | .4279 | .4292 | .4306 | .4319 |
| 1.5 | .4332 | .4345 | .4357 | .4370 | .4382 | .4394 | .4406 | .4418 | .4429 | .4441 |
| 1.6 | .4452 | .4463 | .4474 | .4484 | .4495 | .4505 | .4515 | .4525 | .4535 | .4545 |
| 1.7 | .4554 | .4564 | .4573 | .4582 | .4591 | .4599 | .4608 | .4616 | .4625 | .4633 |
| 1.8 | .4641 | .4649 | .4656 | .4664 | .4671 | .4678 | .4686 | .4693 | .4699 | .4706 |
| 1.9 | .4713 | .4719 | .4726 | .4732 | .4738 | .4744 | .4750 | .4756 | .4761 | .4767 |
| 2.0 | .4772 | .4778 | .4783 | .4788 | .4793 | .4798 | .4803 | .4808 | .4812 | .4817 |
| 2.1 | .4821 | .4826 | .4830 | .4834 | .4838 | .4842 | .4846 | .4850 | .4854 | .4857 |
| 2.2 | .4861 | .4864 | .4868 | .4871 | .4875 | .4878 | .4881 | .4884 | .4887 | .4890 |
| 2.3 | .4893 | .4896 | .4898 | .4901 | .4904 | .4906 | .4909 | .4911 | .4913 | .4916 |
| 2.4 | .4918 | .4920 | .4922 | .4925 | .4927 | .4929 | .4931 | .4932 | .4934 | .4936 |
| 2.5 | .4938 | .4940 | .4941 | .4943 | .4945 | .4946 | .4948 | .4949 | .4951 | .4952 |
| 2.6 | .4953 | .4955 | .4956 | .4957 | .4959 | .4960 | .4961 | .4962 | .4963 | .4964 |
| 2.7 | .4965 | .4966 | .4967 | .4968 | .4969 | .4970 | .4971 | .4972 | .4973 | .4974 |
| 2.8 | .4974 | .4975 | .4976 | .4977 | .4977 | .4978 | .4979 | .4979 | .4980 | .4981 |
| 2.9 | .4981 | .4982 | .4982 | .4983 | .4984 | .4984 | .4985 | .4985 | .4986 | .4986 |
| 3.0 | .4987 | .4987 | .4987 | .4988 | .4988 | .4989 | .4989 | .4989 | .4990 | .4990 |

Source: Adapted with permission from Frederick Mosteller and Robert E. K. Rourke, 1973. Sturdy Statistics. Table A-1. Reading, MA: Addison-Wesley. *Proportion of the area under the normal curve corresponding to the distance between the mean (0) and a point that is z standard deviation units away from the mean.

Table B. 3 The t Distribution

	Level of Significance for a One-Tailed Test					
	. 10	. 05	. 025	. 01	. 005	. 0005
			Significan	Two-Tailed		
	. 20	. 10	. 05	. 02	. 01	. 001
1	3.078	6.314	12.706	31.821	63.657	636.619
2	1.886	2.920	4.303	6.965	9.925	31.598
3	1.638	2.353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.405
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.767
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674
29	1.311	1.699	2.045	2.462	2.756	3.659
30	1.310	1.697	2.042	2.457	2.750	3.646
40	1.303	1.684	2.021	2.423	2.704	3.551
60	1.206	1.671	2.000	2.390	2.660	3.460
120	1.289	1.658	1.980	2.358	2.617	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.291

Source: Table B. 3 is adapted with permission from Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research (6th ed.). Published by Longman Group UK Ltd., 1974.

Table B. 4 Critical Values of the Chi-Square Statistic at the .05 and .01 Significance Levels

Area to the Right of the Critical Value		
	Level of Significance	
df	.05	.01
1	3.841	6.635
2	5.991	9.210
3	7.815	11.345
4	9.488	13.277
5	11.070	15.086
6	12.592	16.812
7	14.067	18.475
8	15.507	20.090
9	16.919	21.666
10	18.307	23.209
11	19.675	24.725
12	21.026	26.217
13	22.362	27.688
14	23.685	29.141
15	24.996	30.578
16	26.296	32.000
17	27.587	33.409
18	28.869	34.805
19	30.144	36.191
20	31.410	37.566

Area to the Right of the Critical Value		
	Level of Significance	
df	.05	.01
21	32.671	38.932
22	33.924	40.289
23	33.924	40.289
24	36.415	42.980
25	37.652	44.314
	38.885	45.642
26	40.113	46.963
27	41.337	48.278
28	42.557	49.588
29	43.773	50.892
30	55.758	63.691
40	67.505	76.154
50	79.082	88.379
60	90.531	100.425
70	101.879	112.329
80	113.145	124.116
90	124.342	135.807

Source: Adapted from Donald Owen, Handbook of Statistical Tables, © 1962 by Addison-Wesley Publishing Company, Inc. Reprinted by permission of Addison-Wesley Publishing Company, Inc.

Table B.5a The FDistribution ($\alpha=.01$ in the right tail)

$\frac{d r}{d r}\left(b_{0 \text { own }}\right.$	Numerator Degrees of Freedom								
	1	2	3	4	5	6	7	8	9
1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761
7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188
8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106
9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511
10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424
11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315
12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.3875
हो 13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.1911
14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297
15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948
16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.7804
17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.6822
18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.5971
19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225
20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.4567
21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.3981
¢ 22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.3458
23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.2986
24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.2172
26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.1818
27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.1494
28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195
29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920
30	7.5625	5.3903	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.0665
40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.8876
60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185
120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586
∞	6.6349	4.6052	3.7816	3.3192	30173	2.8020	2.6393	2.5113	2.4073

Table B.5b The F Distribution ($\alpha=.01$ in the right tail)

	Numerator Degrees of Freedom									
	10	12	15	20	24	30	40	60	120	∞
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.5720	8.5494	8.5264
4	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.7170	5.6877	5.6581	5.6281
5	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.3650
6	4.0600	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	3.6365	3.5747	3.5107	3.4445	3.4105	3.1758	3.3404	3.3043	3.2674	3.2298
8	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	3.1373	3.0729	3.0061	2.9365	2.9005	2.8617	2.8259	2.7872	2.7475	2.7067
10	2.9782	2.9110	2.8450	2.7740	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	2.8536	2.7876	2.7186	2.6464	2.6090	2.5705	2.5309	2.4901	2.4480	2.4045
12	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.3410	2.2962
E 13	2.6710	2.6037	2.5331	2.4589	2.4202	2.1801	2.3392	2.2966	2.2524	2.2064
14	2.6022	2.5342	2.4630	2.3879	2.3487	2.1082	2.2664	2.2229	2.1778	2.1307
15	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.1040	2.0584	2.0107	1.9604
$\stackrel{\circ}{\square} 18$	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	2.3779	2.3080	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.8780
20	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	2.3210	2.2504	2.1757	2.0960	2.0540	2.0102	1.9645	1.9165	1.8657	1.8117
- 22	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.9380	1.8894	1.8380	1.7831
23	2.2747	2.2036	2.1282	2.0476	2.0050	1.9605	1.9139	1.8648	1.8128	1.7570
24	2.2547	2.1834	2.1077	2.0267	1.9838	1.9390	1.8920	1.8424	1.7896	1.7330
25	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.7110
26	2.2197	2.1479	2.0716	1.9898	1.9464	1.9010	1.8533	1.8027	1.7488	1.6906
27	2.2043	2.1323	20558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	2.1900	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835	1.6223
40	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
60	1.9926	1.9174	1.8364	1.7480	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120	1.9105	1.8337	1.7505	1.6587	I. 6084	1.5543	1.4952	1.4290	1.3519	1.2539
∞	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.3940	1.3180	1.2214	1.0000

Table B. 6 The Studentized Range Statistic, q

Table B. $6 \quad$ (Continued)

	f	Proportion	$\%$
Less than \$10	16	.029	2.9
$\$ 10-\$ 49$	39	.072	7.2
$\$ 50-\$ 99$	48	.088	8.8
$\$ 100-\$ 249$	86	.159	15.9
$\$ 250-\$ 999$	102	.188	18.8
$\$ 1,000$ or more	251	.463	46.3
	$n=542$		

Value	f	p	$\%$
Never	30	.2000	20.00
A few times	75	.5000	50.00
More than a few times	35	.2333	23.33
A lot	10	.0667	6.67

Value	f		c	c	p	$c p$

Value	f	p	$\%$
Male	16	.64	64
Female	9	.36	36

Distribution of Test Scores for Recruit Class

Gender Distribution of Recruit Class

Cumulative Frequency Line Graph for Test Score Data

Time Plot of NCVS Property Crime Victimization Rates per 1,000 Households

m_{i}	$m_{i}-\bar{X}$	$\left(m_{i}-\bar{X}\right)^{2}$	f	$f\left(m_{i}-\bar{X}\right)^{2}$
2	$2-8.6=-6.6$	43.56	76	$3,310.56$
7	$7-8.6=-1.6$	2.56	52	133.12
12	$12-8.6=-3.4$	11.56	38	439.28
17	$17-8.6=8.4$	70.56	21	$1,481.76$
22	$22-8.6=13.4$	179.56	10	$1,795.60$
27	$27-8.6=18.4$	338.56	8	$2,708.48$
				$\Sigma=9,868.80$

[^0]: Source: Adapted from Core Alcohol and Drug Survey: Long Form © 2015 from the Core Institute.

[^1]: *Does not sum to 100% because of rounding.

[^2]: Source: Adapted from The Cost of Prisons: What Incarceration Costs Taxpayers © 2012 from the Vera Institute of Justice.

[^3]: a. Dependent Variable: Murder Rate per 100K

