
Chapter 3: Probability

1. (a) This problem asks you to derive the probability of the union of two events, as implied by the fact that
the question uses the word “or.” The first event A is “the randomly drawn member of Congress is a
Republican” and the second event B is “the randomly drawn member of Congress is a Senator.” The
probability of the union of two events is

P (A ∪B) = P (A) + P (B)− P (A ∩B).

There are 533 total members of Congress, and 233+46=279 Republicans in Congress, so the probability
of A is

P (A) =
279

533
= .523.

There are 100 Senators, so the probability of B is

P (B) =
100

533
= .188.

The intersection of A and B refers to the number of Republican Senators, of which there are 46. The
probability of the intersection is

P (A ∩B) =
46

533
= .086.

So the probability that a randomly drawn member of Congress is a Republican or a Senator is

P (A ∪B) = P (A) + P (B)− P (A ∩B) = .523 + .188− .086 = .625.

(b) The question asks how many ways are there to choose a group of 13 out of a larger group of 433. Order
doesn’t matter because if we’re not considering rank and chairmanship all committee members have
equal standing. That means we are to find the following combination:(

433

13

)
=

433!

13!(433− 13)!
=

433!

13!420!

=
433× 432× 431× 430× 429× 428× 427× 426× 425× 424× 423× 422× 421

13× 12× 11× 10× 9× 8× 7× 6× 5× 4× 3× 2× 1

≈ 2, 518, 055, 000, 000, 000, 000, 000, 000 (2.5 Septillion!)

2. (a) A student whose parents belong to a country club probably comes from a family with some wealth.
Wealthier families can afford private SAT lessons for their children. Therefore these events are condi-
tionally independent, and are related only insofar as they both depend on the wealth of the student’s
family.

(b) These events are probably dependent since better schools and libraries would directly cause a lower rate
of illiteracy.
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(c) Two mutually exclusive events share no outcomes. That means that if one event occurs, then the other
cannot occur. Therefore the two events are dependent.

This is a tricky question. Be sure not to confuse mutually exclusive with independent. An example
of two mutually exclusive events might be A =“a person votes for the Democrat” and B =“a person
votes for the Republican.” These events are not independent because if a person votes for the Democrat
he or she by definition does not vote for the Republican. In contrast, if two events are independent, then
whether one occurs or not has no bearing on whether the other will occur or not.

3. There are many, many examples. One example is
A =“there are more than 200 visitors to Monticello (Thomas Jefferson’s home, now a historical museum near
Charlottesville, VA) today”, and
B =“the Japanese stock market rises 100 points.”
These events are almost certainly independent. Unless, of course, one of the visitors to Monticello is a Japanese
stock broker on vacation who realizes that the elderberry wine produced in central Virginia is delicious and
places an unprecedented order for elderberries on the Japanese commodities exchange and sets off a chain of
events that results in the recovery of the Japanese and Virginian economies and the invention of Bluegrass
Kabuki theater.

4. By the definition of a combination we know that(
n

k

)
=

n!

k!(n− k)!
.

If we plug n− k in for k in the above equation, we get(
n

n− k

)
=

n!

(n− k)!k!
,

which is the same thing as before. Therefore (
n

k

)
=

(
n

n− k

)
.

5. (a) The event A is “at least 2 people in a class of 30 share a birthday,” so the complement Ã is “no one in a
class of 30 shares a birthday with anyone else in the class.” The sample space S consists of “every way
the 30 people in the class can have a birthday.”

(b) There are 365 days in a year. Consider the 30 students as if they are lined up. The first student can
have any of 365 birthdays. The second student cannot share a birthday with the first student, but can
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have any of the 364 remaining possibilities. Likewise the 3rd student has 363 possibilities, and so on,
until the 30th student has 336 possibilities. All together, multiplying these stages together, there are

365× 364× 363× . . .× 336 ≈ 2.17× 1076 possibilities.

An alternative way to think about this problem is that we are trying to choose 30 birthdays out of the
set of 365 possible birthdays. Order matters here since if two students switch their birthdays, that’s a
different outcome. We use a permutation:

365P30 =
365!

(365− 30)!
= 365× 364× 363× . . .× 336 ≈ 2.17× 1076 possibilities.

(c) For the sample space, the event with all possible outcomes, we don’t care whether two students share a
birthday or not. Each student has 365 possible birthdays. So the 30 students have

36530 ≈ 7.4× 1076.

possible combinations of birthdays.

(d) The probability of event A, “at least 2 people in a class of 30 share a birthday,” is

P (A) = 1− P (Ã) = 1− |Ã|
|S|

.

In part (b) we derived
|Ã| = 365× 364× 363× . . .× 336 ≈ 2.17× 1076,

and in part (c) we derived
|S| = 36530 ≈ 7.4× 1076.

So the probability of A is

1− 365× 364× 363× . . .× 336

36530
= 0.706,

which is a surprisingly high result.

6. (a) A TRUE response (X) happens when the respondent has taken a bribe (W ) AND has spun A (Y ), OR
has never taken a bribe (W̃ ) AND has spun a B (Ỹ ).

If we replace the events with their symbols, the word AND with intersections, and the word OR with a
union, the statement becomes

X = (W ∩ Y ) ∪ (W̃ ∩ Ỹ ).

(b) The events W and Y are independent because the probability of taking a bribe does not affect the prob-
ability of spinning an A or B, and the probability of spinning A or B does not affect the probability of
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taking a bribe.

The events X and Y are NOT independent because the probability of stating TRUE depends on the
probability of spinning A or B.

(c) We start with our answer in part (a):

X = (W ∩ Y ) ∪ (W̃ ∩ Ỹ ).

Then the probability of X is

P (X) = P

(
(W ∩ Y ) ∪ (W̃ ∩ Ỹ )

)
.

If we apply the formula for the probability of a union, P (A ∪B) = P (A) + P (B)− P (A ∩B), we get

P (X) = P (W ∩ Y ) + P (W̃ ∩ Ỹ )− P
(

(W ∩ Y ) ∩ (W̃ ∩ Ỹ )

)
.

First consider the last term. The event W ∩Y represents officials who’ve taken a bribe and spun A. The
event W̃ ∩ Ỹ represents officials who’ve never taken a bribe and who’ve spun B. These two events are
mutually exclusive because they share no elements. That means that their intersection is the empty set,
and the probability of the empty set is 0:

P

(
(W ∩ Y ) ∩ (W̃ ∩ Ỹ )

)
= 0.

That leaves us with
P (X) = P (W ∩ Y ) + P (W̃ ∩ Ỹ ).

Finally, recall that in part (b) we found that events W and Y are independent. The same logic must
apply to W̃ and Ỹ . We apply the formula for the probability of the intersection of two independent
events, P (A ∩B) = P (A)P (B) and find

P (X) = P (W )P (Y ) + P (W̃ )P (Ỹ ).

(d) We start with
P (X) = P (W )P (Y ) + P (W̃ )P (Ỹ ).

We apply the rule for the probability of a complement, P (Ã) = 1− P (A), and find

P (X) = P (W )P (Y ) +

(
1− P (W )

)(
1− P (Y )

)
.

Multiplying this equation out, it becomes

P (X) = P (W )P (Y ) +

(
1− P (W )− P (Y ) + P (W )P (Y )

)
,

P (X) = 2P (W )P (Y ) + 1− P (W )− P (Y ).

In order to solve for P (W ), we bring every term with P (W ) over to one side, and bring every term with
P (W ) to the other side,

P (X) + P (Y )− 1 = 2P (W )P (Y )− P (W ),
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we factor out P (W ),

P (X) + P (Y )− 1 = P (W )

(
2P (Y )− 1

)
,

and divide to isolate P (W ):

P (W ) =
P (X) + P (Y )− 1

2P (Y )− 1
.

(e) If the spinner had equal sized areas for A and B, then the probability of spinning A would be P (Y ) = 0.5.
But plugging this value into

P (W ) =
P (X) + P (Y )− 1

2P (Y )− 1

places 0 in the denominator. Therefore it is only possible to solve for P (W ) in this way when the spinner
has unequal areas for A and B.

(f) If 35% of respondents select TRUE, then P (X) = 0.35, and we know that P (Y ) = 0.75. We simply plug
these probabilities into the equation for P (W ):

P (W ) =
P (X) + P (Y )− 1

2P (Y )− 1
,

P (W ) =
0.35 + 0.75− 1

2(0.75)− 1
=

0.1

0.5
= 0.2.

So given these results, we conclude that 20% of government officials have taken bribes.

7. Let H be the event in which I have a headache and let F be the event in which I have the flu. The problem
tells us that

• P (H) = .1, since I have a headache 1 out of 10 days in any event,

• P (H|F ) = .5 since half of all flu sufferers have headaches,

• and P (F ) = 0.02 since 2% of the population will come down with the flu.

What we are trying to find is P (F |H), the probability of coming down with the flu given a headache. Bayes’
rule tells us that

P (F |H) =
P (H|F )P (F )

P (H)
.

So we simply plug in the corresponding values:

P (F |H) =
0.5× 0.02

0.1
= 0.1.
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8. (a) Let N be the event that an email contains the word “Nigeria” and let S be the event that an email is
spam. The question tells us that

• P (N |S) = 0.05 since 5% of all spam messages contain the word “Nigeria,”

• P (S) = 0.35 since 35% of emails are spam,

• P (S̃) = 0.65 since this is the complement event to S,

• and P (N |S̃) = 0.001 since only 0.1% of legitimate emails contain the word “Nigeria.”

In order to find P (S|N), the probability that an email that contains the word “Nigeria” is spam, we
apply version 2 of Bayes’ rule:

P (S|N) =
P (N |S)P (S)

P (N |S)P (S) + P (N |S̃)P (S̃)
=

0.05× 0.35

0.05× 0.35 + 0.001× 0.65
= 0.96.

(b) This question requires us to find the proportions of non-spam with the word “Nigeria,” P (N |S̃), such
that the probability that an email with “Nigeria” is spam is less than 0.95:

P (S|N) < 0.95.

First, substitute the Bayes’ rule expression we found in part (a) in for P (S|N):

P (N |S)P (S)

P (N |S)P (S) + P (N |S̃)P (S̃)
< 0.95.

Next, plug in what we still know to be true – P (S) = 0.35, P (S̃) = 0.65, and P (N |S) = 0.05:

0.05× 0.35

(0.05× 0.35) + 0.65P (N |S̃)
< 0.95,

0.0175

0.0175 + 0.65P (N |S̃)
< 0.95.

Finally, we solve the inequality for P (N |S̃):

0.0175 < 0.95

(
0.0175 + 0.65P (N |S̃)

)
,

0.0175 < 0.0166 + 0.62P (N |S̃),

P (N |S̃) >
0.0175− 0.0166

0.62
= .0015.

So if at least 0.15% of non-spam emails contain the word “Nigeria,” then emails with this word will no
longer be filtered.

(c) We know that, regardless of which version of the email is used, the probability that someone is gullible
is P (G) = 0.05 and the probability that someone is not is P (G̃) = 0.95. Our goal is to calculate P (G|R),
the probability that someone is gullible given that they respond to the email. Let’s first consider version
1 of the email. In this version, we know that

• P (R|G) = 0.4 since 40% of gullible people will respond,
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• and P (R|G̃) = 0.2 since 20% of non-gullible people respond.

We plug these values into version 2 of Bayes’ rule for P (G|R):

P (G|R) =
P (R|G)P (G)

P (R|G)P (G) + P (R|G̃)P (G̃)
=

0.4× 0.05

0.4× 0.05 + 0.2× 0.95
= 0.095.

For the second version of the email,

• P (R|G) = 0.1 since 10% of gullible people will respond,

• and P (R|G̃) = 0.001 since only 1 in 1000 non-gullible people respond.

Again, we plug these values into version 2 of Bayes’ rule for P (G|R):

P (G|R) =
P (R|G)P (G)

P (R|G)P (G) + P (R|G̃)P (G̃)
=

0.1× 0.05

0.1× 0.05 + 0.001× 0.95
= 0.84.

Therefore version 2 yields a much, much higher probability that the respondents will be gullible.

9. (a) The expected utility of the juror for voting for acquittal is

EU(acquit) = U(acquit an innocent person)P (G̃) + U(acquit a guilty person)P (G),

= 0(1− π)− (1− z)π = −π(1− z).

The expected utility of the juror for voting to convict is

EU(convict) = U(convict an innocent person)P (G̃) + U(convict a guilty person)P (G).

= −z(1− π) + 0π = −z(1− π).

The juror will vote to convict when

EU(convict) > EU(acquit),

−z(1− π) > −π(1− z),

−z + zπ > −π + zπ,

−z > −π,

z < π.

Substantively, this result means that the juror will only vote to convict when the juror’s belief that the
defendant is guilty outweighs her aversion to convicting an innocent person.

(b) We know from part (a) that P (G) = π and P (G̃) = 1 − π. In addition, the problem tells us that
P (D|G̃) = p and P (D|G) = q. We simply plug these values into version 2 of Bayes’ rule for P (G|D):

P (G|D) =
P (D|G)P (G)

P (D|G)P (G) + P (D|G̃)P (G̃)
=

qπ

qπ + p(1− π)
.
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(c) If π = 1 the juror is already convinced that the defendant is guilty before the trial has even taken place.
Her posterior belief,

q(1)

q(1) + p(1− 1)
=
q

q
= 1,

is equal to the prior. That is, she remains convinced that the defendant is guilty. In this case, the signal
didn’t matter. Indeed, the fact that the defense presented a better case should have made the juror less
certain about the guilt of the defendant, but because her prior biases were so strong she did not even
consider the information revealed by the trial.

If p = q, her posterior belief becomes

pπ

pπ + p(1− π)
=

pπ

pπ + p− pπ
=
pπ

p
= π.

In this case her posterior belief is equal to her prior belief in the defendant’s guilt. But this result is true
for any prior belief, not just the prior that π = 1. If p = q, then the defense would have presented the
better case with the same probability regardless of whether the defendant is actually guilty or innocent.
This situation can occur if the defense is far overmatched by the prosecution; regardless of the truth,
the defense will lose because the lawyers are bad. Counter-intuitively, this situation can also occur if the
defense is dominant; the defense will win regardless of the truth because the lawyers are excellent. In
either case, the juror is receptive to the signal being sent by the trial. But because the performance of the
defense appears to be independent of the truth of the case, the signal is too weak to alter the juror’s belief.

Finally, if p = 1 and q = 0, the juror’s posterior becomes

0π

0π + 1(1− π)
= 0.

In this case, the defense is certain to present the better case if the truth is that the defendant is innocent,
and is certain to present the weaker case if the defendant is guilty. Therefore the fact that the defense
presented the stronger case sends the strongest possible signal to the juror about the defendant’s inno-
cence. As a result, the juror updates her belief to be certain of the defendant’s innocence, regardless of
her prior belief (as long as the prior is less than 1. If the prior where equal to 1 in this case, then the
posterior would become 0/0, and the juror’s head would simply explode).

10. (a) Each site will be cleared with probability p, where p is .95 if the Syrian government is compliant, and .6
if the government is non-compliant. Whether or not each site gets cleared can be thought of as a series
of independent experiments with the same probability of success, so we can calculate the probability of
clearing 7 sites using the binomial distribution. Denote the event that the government clears 7 sites as
X = 7. If the government is compliant, then

P (X = 7|C) =

(
10

7

)
.957.053 = 0.01,

and if the government is non-compliant, the probability is

P (X = 7|C̃) =

(
10

7

)
.67.43 = 0.215.

(b) We want to find the probability that the government was compliant given that 7 sites were cleared. Since
there are only two possible states of the world under consideration here – the one in which the Syrian
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government is compliant and the one in which the government is non-compliant – we can use the second
version of Bayes’ rule. The equation is

P (C|X = 7) =
P (X = 7|C)P (C)

P (X = 7|C)P (C) + P (X = 7|C̃)P (C̃)
.

Our prior belief that the government was compliant, as given in the problem, is P (C) = .8, implying
that P (C̃) = .2. In part (a) we calculated that P (X = 7|C) = .01 and P (X = 7|C̃) = .215. We simply
plug these numbers into the above equation:

P (C|X = 7) =
P (X = 7|C)P (C)

P (X = 7|C)P (C) + P (X = 7|C̃)P (C̃)
=

.01× .8
.01× .8 + .215× .2

=
.008

.051
= .157.

So our belief that the government was compliant is reduced from .8 to .157.

11. Let T be the event in which Obama uses the word “terrorism.” We are trying to update our beliefs on
Obama’s ideology. The probability that Obama is far left given that he spoke about terrorism is

P (FL|T ) =
P (T |FL)P (FL)

P (T )
.

We don’t, however, know P (T ). What we do know are the probabilities of T given each of the six ideologies.
We can calculate these from the table:

• P (T |FL) = 2
10000 = 0.0002

• P (T |EL) = 5
10000 = 0.0005

• P (T |CL) = 70
10000 = 0.007

• P (T |CR) = 50
10000 = 0.005

• P (T |LR) = 40
10000 = 0.004

• P (T |FR) = 120
10000 = 0.0120

Because these categories are a partition, version 3 of Bayes’ rule tells us that we can replace P (T ) in the
denominator with the sum of these conditional times the prior probabilities of each category:

P (T ) = P (T |FL)P (FL) + P (T |EL)P (EL) + P (T |CL)P (CL)

+P (T |CR)P (CR) + P (T |LR)P (LR) + P (T |FR)P (FR)

Plugging in the probabilities, we get

P (T ) = (0.0002× 0.2) + (0.0005× 0.25) + (0.007× 0.35)

+(0.005× 0.1) + (0.004× 0.05) + (0.0120× 0.05) = 0.003915

Now it is fairly straightforward to update our belief that Obama is far left:

P (FL|T ) =
P (T |FL)P (FL)

P (T )
=

0.0002× 0.2

0.003915
= 0.01.

For economic left

P (EL|T ) =
P (T |EL)P (EL)

P (T )
=

0.0005× 0.25

0.003915
= 0.03.

For center left,

P (CL|T ) =
P (T |CL)P (CL)

P (T )
=

0.007× 0.35

0.003915
= 0.63.

For center right,

P (CR|T ) =
P (T |CR)P (CR)

P (T )
=

0.005× 0.12

0.003915
= 0.13.
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For libertarian right,

P (LR|T ) =
P (T |LR)P (LR)

P (T )
=

0.004× 0.05

0.003915
= 0.05.

And for far right,

P (FR|T ) =
P (T |FR)P (FR)

P (T )
=

0.0120× 0.05

0.003915
= 0.15.
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